Diss. ETH No. 12434

A Generalisation Approach to Temporal
Data Models and their Implementations

A dissertation submitted to the
SWISS FEDERAL INST"ITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doctor of Technical Sciences

presented by
ANDREAS STEINER
Dipl. Informatik-Ing. ETH
born June 12, 1964
citizen of Oberiberg (S7)

accepted on the recommendation of
Prof. Dr. M.C. Norrie, examiner
Prof. Dr. C.A. Zehnder, co-examiner

1998

i

To my parents Frieda and Ernst Steiner-Bisig!

11

v

Abstract

Non-temporal data models and their implementations as database management systems (DBMS)
capture a single state of the real world, usually the current one. They support modification
operations which facilitate the transition from one consistent database state to another. For queries,
they assume that the data is synchronous, meaning that all the facts stored in the database are
valid at the time instant a query is evaluated.

There exist many application domains, however, where it is necessary to reconstruct earlier
database states or even store future database states (e. g. for planning, budgets) in parallel. The
different database states are stored as temporal data. Such temporal data arises, for example, in
financial and insurance applications, in reservation systems and in medical information manage-
ment. Of course, it is also possible in practice to store timestamps in classical DBMS and model
the temporal aspects mentioned above in this way. However, such an approach does not cater for
the special semantics of time.

Thus, there are many proposals for both relational and object-oriented models as to how the
non-temporal data models can be enhanced to support the management of temporal data. Their
focus is mainly on eztending the data structures and/or the query language. Hardly any of these
temporal data models were implemented, even in the form of prototype systems.

A more systematic way to define temporal data models is based on generalising a non-temporal
data model into a temporal one. Using generalisation means that all constructs of the underlying
non-temporal data model — its data structures, operations and integrity constraints — are enhanced
to support the management of time-varying data.

To show the power of the generalisation approach, this thesis investigates three approaches
to managing temporal data, along with the corresponding prototype implementations. The first
approach timestamps data by extending the data structures with special timestamp attributes, but,
in contrast to existing proposals, uses a generalised query, data definition and data manipulation
language. The second approach fully generalises a non-temporal object data model into a temporal
one. The resulting temporal object data model TOM does not extend the data structures, but
rather uses the notion of temporal object identifiers to timestamp data. In TOM, not only the user
data can be timestamped, but also constructs supported by the data model such as collections of
objects, types, integrity constraints and so on, since they are also considered to be objects. This
temporal data model was implemented as a single-user prototype system. The third approach
demonstrates how the extensible nature of object-oriented DBMS can be used directly to support
temporal applications through the use of abstract data types. It is shown that while temporal data
structures and operations can be accommodated in this way, support for generalised data models
and query languages is restricted.

These approaches show that a generalised temporal data model is better suited to the modeling
and management of temporal data than an extended one, and that generalised data models are
implementable. By presenting an evolutionary path from temporal first normal form relations to
temporal nested relations, temporal complex objects and temporal object-oriented data models,
it 1s shown that the temporal object data model TOM actually subsumes the extended temporal
data models.

vi

Zusammenfassung

Nicht-temporale Datenmodelle und ihre Implementationen als Datenbankverwaltungssysteme
(DBMS) speichern einen einzigen Zustand der realen Welt, normalerweise den momentan Giiltigen.
Sie unterstiitzen Operationen zur Datenmodifikation, welche einen konsistenzerhaltenden Uber-
gang von einem Datenbankzustand zu einem néchsten ermoglichen. Bei Datenbankanfragen wird
angenommen, dass die Daten synchron sind, oder in anderen Worten, dass alle Fakten, die in der
Datenbank gespeichert sind, zum Zeitpunkt der Anfrageauswertung giiltig sind.

Es gibt jedoch viele Anwendungen, in denen es nétig ist, frithere Datenbankzustdnde rekonstru-
ieren oder gar zukiinftige Datenbankzustdnde (z. B. fiir Planungen, Budgets) parallel speichern zu
kénnen. Zur Darstellung der verschiedenen, zeitabhdngigen Zustdnde werden sogenannte temporale
Daten verwendet. Temporale Daten entstehen zum Beispiel in Finanz- und Versicherungsanwen-
dungen, in Reservationssystemen und in der Verwaltung medizinischer Daten. Selbstverstdndlich
lassen sich auch mit klassischen DBMS Zeitangaben speichern und so die genannten tempora-
len Aspekte darstellen. Diese Lésung wird aber der besonderen Bedeutung des Zeitaspektes nicht
wirklich gerecht.

Daher gibt es viele Vorschldge, nicht-temporale relationale und objekt-orientierte Datenmo-
delle anzupassen, um die Verwaltung von temporalen Daten problemgerecht zu unterstiitzen. Sie
konzentrieren sich hauptsichlich darauf, einzelne Datenstrukturen und/oder die Abfragesprache
zu erweitern. Sehr wenige dieser temporalen Datenmodelle wurden allerdings implementiert, nicht
einmal in der Form von Prototypen.

Ein systematischerer Weg, temporale Datenmodelle problemgerecht zu definieren, basiert auf
der Generalisierung eines nicht-temporalen in ein temporales Datenmodell. Bei der Generalisierung
werden alle Konstrukte des zugrundeliegenden nicht-temporalen Datenmodells — seine Datenstruk-
turen, Operationen und Integritdtsbedingungen — angepasst, um die Verwaltung zeitabhingiger
Daten zu unterstiitzen.

Um die Starken der Generalisierung zu zeigen, untersucht diese Dissertation drei Ansétze zur
problemgerechten Verwaltung temporaler Daten bis und mit den entsprechenden Implementatio-
nen als Prototypen. Der erste Ansatz versieht Daten mit Zeitstempeln, indem die Datenstrukturen
mit speziellen Zeitstempelattributen erweitert werden. Es wird jedoch im Gegensatz zu anderen
Vorschlagen eine generalisierte Abfrage-, Datendefinitions- und Datenmanipulationssprache ver-
wendet. Der zweite Ansatz generalisiert ein nicht-temporales Objektdatenmodell vollstdndig in ein
temporales. Das resultierende temporale Objektdatenmodell TOM erweitert nicht mehr die Daten-
strukturen, sondern verwendet temporale Objektidentifikatoren, um die Daten mit Zeitstempeln zu
versehen. In TOM lassen sich nicht nur Benutzerdaten, sondern auch Konstrukte des Datenmodells
wie Kollektionen von Objekten, Typen, Integritdtsbedingungen etc. mit Zeitstempeln versehen, da
diese ebenfalls Objekte sind. Dieses temporale Datenmodell wurde als Einbenutzersystem imple-
mentiert. Der dritte Ansatz demonstriert, wie die Erweiterbarkeit von objekt-orientierten DBMS
direkt verwendet werden kann, um temporale Anwendungen mit abstrakten Datentypen zu un-
terstiitzen. Damit wird gezeigt, dass auf diese Weise zwar temporale Datenstrukturen und Opera-
tionen zur Verfiigung gestellt werden kénnen, die Unterstiitzung von generalisierten Datenmodellen
und Abfragesprachen aber eingeschrankt ist.

Diese Ansitze zeigen, dass mit einem generalisierten, temporalen Datenmodell zeitabhingige
Daten besser beschrieben und verwaltet werden koénnen als in erweiterten Modellen, und dass

vil

generalisierte Modelle implementierbar sind. Mit einem Evolutionspfad von temporalen Relationen
in erster Normalform tiber temporale verschachtelte Relationen zu temporalen komplexen Objekten
und temporalen objekt-orientierten Datenmodellen wird zusatzlich gezeigt, dass das temporale
Objektdatenmodell TOM die erweiterten temporalen Datenmodelle subsumiert.

viil

Acknowledgements

My odyssey through different research groups here at ETH now is finally ending up in this thesis.
It was an adventurous journey in all aspects, and having reached its final destination and getting
ready for a new one, I know all the experiences made will be invaluable.

I am deeply indebted to Professor Dr. Moira C. Norrie, my supervisor, for giving me the chance
to finish this thesis, for her extraordinary support at all times, for broadening my data model
horizon and providing the good weather for the last and important part of this journey.

I thank Professor Dr. Carl A. Zehnder for acting as a co-examiner. His valuable comments and
the discussions with him helped improving this thesis.

I am grateful to Dr. Robert Marti for giving me the opportunity to start this journey and
leading me into a very interesting research area.

Additionally, I would like to thank Roman Gross, Urs Badertscher, Thomas Schumacher, An-
tonia Erni, Adrian Kobler, Epaminondas Kapetanios, Gabrio Rivera and Alain Wiirgler, my col-
leagues here at ETH, for interesting and valuable discussions and for contributing to the comfort-
able and intellectually stimulating ambience.

Last but not least, I would like to thank all those people behind the scenes, especially Maya
Ruckli and Lydia Steiner, for their support and help to keep on going.

1X

Contents

1 Introduction

1.1

1.2
1.3

1.4
1.5

2 Key
2.1

2.2

2.3

2.4

2.5

1

Non-Temporal Data Models and Database Management Systems 1
1.1.1 Database Management Systems oL 1
1.1.2 The Relational Data Model and Relational DBMS 2
1.1.3 Object Data Models and Object-Oriented DBMS 4
1.1.3.1 The Object Data Model OM 5

Why Temporal Databases 7 7
Handling Temporal Data 7
1.3.1 How are Data Models affected when Time is added? 8
1.3.2 How can Support for Temporal Databases be implemented? 8
1.3.2.1 Temporal DBMS without Changes to existing Database Technology 9

1.3.2.2 Temporal DBMS with Changes to existing Database Technology . 10

Contribution 11
Structure of the Thesis 12
Concepts 15
Modeling Time o 15
2.1.1 Different Models of Time 15
2.1.2 Chronons 16
2.1.3 Time Instants and Events 16
2.1.4 Time Intervals and Temporal Elements 16
2.1.5 Comparison Predicates for Time Intervals 17
Notions of Time 18
2.2.1 User-defined Time 18
2.2.2 Valid Time 19
2.2.3 Transaction Time. 19
2.2.4 Other Time Lines 19
Temporal Databases 20
2.3.1 Snapshot Databases 20
2.3.2 Historical Databases oL 20
2.3.3 Rollback Databases 21
2.3.4 Bitemporal Databases 0oL 22
Timestamping Data 0L oL o 23
2.4.1 What is Timestamped 7o 23

2.4.1.1 Tuple and Object Timestamping 23

2.4.1.2 Attribute Timestamping 24
2.4.2 How is it Timestamped 7 24

2.4.2.1 Timestamping with Time Instants 24

2.4.2.2 Timestamping with Time Intervals 25

2.4.2.3 Timestamping with Temporal Elements 26
Temporal Operations 27

X1

2.5.1 Vertical Temporal Anomaly and Coalescing 27

2.5.2 Snapshot Reducibility 29
2.5.3 Temporal Completeness 30

2.6 Summary 32
3 Temporal Data Models 35
3.1 Temporal Relational Data Models 35
3.1.1 Tuple Timestamping 35
3.1.1.1 Timestampis a Time Instant 35

3.1.1.2 Timestampis a Time Interval 37

3.1.1.3 Timestamp is a Time Instant or a Time Interval 38

3.1.1.4 Timestamp is a Temporal Element 39

3.1.2 Attribute Timestampingo 40
3.1.2.1 Timestampis a Time Interval 40

3.1.2.2 Timestamp is a Temporal Element 41

3.1.3 Tuple and Attribute Timestamping 43

3.2 Temporal Entity Relationship Data Models 43
3.2.1 Entity Timestamping 44
3.2.2 Attribute Timestamping Lo 44

3.3 Temporal Object Data Models 45
3.3.1 Object Timestamping 45
3.3.1.1 Timestampis a Time Instant 45

3.3.1.2 Timestampis a Time Interval 46

3.3.2 Attribute Timestamping Lo 47
3.3.3 Tuple and Attribute Timestamping 50

3.4 Summary 51
4 A Temporal Relational DBMS : TimeDB 53
4.1 Features of TimeDB 53
4.2 The History of TimeDB and ATSQL2 54
4.3 ATSQL2 55
4.3.1 Requirements for ATSQL2 55
4.3.2 The Query Language of ATSQL2 56
4.3.2.1 Upward Compatible Queries 56

4.3.2.2 Temporal Upward Compatible Queries 57

4.3.2.3 Sequenced Queries 58

4.3.2.4 Non-Sequenced Queries L 59

4.4 Translation of Temporal Queries to Standard SQL Statements 59
4.4.1 The Basic Idea of the Translation Algorithm 60
4.4.2 Temporal Upward Compatible Queries 60
4.4.3 Implementing the Temporal Algebra 60
4.4.3.1 Temporal Set Union Operation 61

4.4.3.2 Temporal Set Difference Operation 61

4.4.3.3 Temporal Set Intersection Operation 63

4.4.3.4 Temporal Selection Operation 64

4.4.3.5 Temporal Projection Operation 64

44.3.6 Temporal Cross Product Operation 64

4.4.4 Bitemporal Algebra Operations 64
4.4.4.1 Bitemporal Set Union Operation 65

4.4.4.2 Bitemporal Set Difference Operation 66

4.4.4.3 Bitemporal Set Intersection Operation 67

4.4.44 Bitemporal Cross Product Operation 67

4.4.5 Derived Tables and Views 68

X1l

4.4.6 Subqueries L
447 Coalescing L e
4.4.7.1 Unitemporal Coalescing

4.4.7.2 Bitemporal Coalescing o0

44.8 Anextended Exampleo

4.5 Temporal Constraint Checking o0 o0
4.6 The TimeDB DBMS
4.6.1 Architecture of the TimeDB DBMS
4.6.2 Steps of the Rewriting Algorithm
4.6.3 Meta-Tables
4.6.4 User Interface of TimeDB L.

47 Summary . .o oo

A Temporal Object Data Model : TOM
5.1 Generalising an Object Data Model 0oL
5.2 The Non-Temporal Object Data Model OM
5.3 Generalised Temporal Data Structures
5.3.1 Object Lifespans and Visibility
5.3.2 Temporal Object Identifiers
5.3.3 Valid-Time Objects
5.3.4 Valid-Time Collections
5.3.5 Valid-Time Subcollection Relationship
5.3.6 Adding and Removing Valid-Time Objects to Valid-Time Collections
5.3.7 Object Evolution
5.3.8 Temporal Associations L0
5.4 Temporal Constraints
5.5 Temporal Collection Algebra L
5.6 A Similar Temporal Object Data Model: TEER,
.7 Summary

Implementing the Temporal Object Data Model TOM
6.1 Different Possibilities to implement the Temporal Object Data Model TOM
6.2 The Temporal Object Model System TOMS
6.2.1 Features of TOMS
6.2.2 A simple Type System Lo
6.2.3 Implementing Temporal Objects
6.2.3.1 Simple Temporal Objects
6.2.3.2 Temporal Collections,
6.2.3.3 Temporal Associations
6.2.4 Implementing the Temporal Constraints
6.2.4.1 Model Inherent Constraints
6.2.4.2 User-Specified Constraints
6.2.5 Implementing the Temporal Collection Algebra
6.2.5.1 Operations on Lifespans
6.2.5.2 Temporal Collection Algebra Operations
6.3 Implementing the Temporal Object Data Model TOM using Oy
6.3.1 Using O2 to manage Temporal Data
6.3.2 The Oy Data Model
6.3.3 Lifespans in Og L
6.3.4 Temporal Data Structures 0
6.3.5 Temporal Associations
6.3.6 Temporal Constraints
6.3.7 Operations on Lifespans L0

X1V

6.4 Summary

7 Comparing the Different Timestamping Approaches

7.1 Temporal Data Model Evolution
7.1.1 Data Types and Type Constructors
7.1.2 Temporal First Normal Form Relations
7.1.3 Temporal Nested Relations
7.1.4 Temporal Complex Objects,
7.1.5 Temporal Object-Oriented Data Models
7.1.6 A Temporal Collection Model

7.2 Different Forms of Timestamping Data

7.3 Timestamping Meta-Data 0o oo
7.3.1 Timestamping Relations and Collections
7.3.2 Timestamping Views L
7.3.3 Timestamping Constraints Lo
7.3.4 Timestamping Types

7.4 Proposed Changes for Extension Approaches

7.5 Summary ...

8 Conclusions
8.1 Summary

8.2 Future Work

A Glossary

119
119
120
120
120
122
123
124
127
128
129
129
130
130
130
131

133
133
135

137

Chapter 1

Introduction

Non-temporal data models and their implementations as database management systems capture a
single state of the real world, usually the current one. They support modification operations which
facilitate the transition from one database state to another, thereby replacing old values by new
ones. For queries, it is assumed that the data is synchronous, meaning that all the facts stored in
the database are valid at the time instant a query 1s evaluated.

There exist many application domains, however, where it is necessary to keep the old database
states or even store future database states. While it is not a major problem to find ways to add
validity time periods to data to keep the history of it, it is a difficult task to query time-varying data
and specify integrity constraints which hold over several database states if using a non-temporal
data model and query language.

Research in the area of temporal databases has come up with quite a diversity of temporal data
models addressing these and other issues. Most of the work has been done with respect to query
languages and their extension to support time-varying data. One question often discussed is which
additional operations need to be supported in order to be able to query time-varying data. Another
one is how the semantics of already supported operations should be changed in order to use them
on time-varying data. While most proposals focus on these issues, we believe that, in order to
find a general and orthogonal solution, all parts of a data model need to be considered — the data
structures, the operations and the constraints.

This chapter first gives a short introduction to non-temporal data models and their imple-
mentations as database management systems. Then, the questions why temporal databases are
needed to handle time-varying data and what approaches are available to provide such support are
discussed. The contributions and the structure of this thesis conclude this chapter.

1.1 Non-Temporal Data Models and Database Management
Systems

This section gives a short introduction to non-temporal database management systems and the
non-temporal data models whose temporal counterparts will be discussed in this thesis. It also
shows how these models are used and why they are necessary when large amounts of data have to
be managed.

1.1.1 Database Management Systems

In the early 60’s, data was stored in files and organised with respect to the application that used
the data. By using file systems, data redundancy was introduced. Additionally, data was neither
independent from the devices it was stored on nor from changes in applications. In the early
70’s, systems were developed to overcome the drawbacks of approaches based on file systems. The

2 CHAPTER 1. INTRODUCTION

trend was to get away from application specific software solutions to a general framework, allowing
different application domains to be implemented using a general-purpose software system. This
software system is called a database management system (DBMS). One of the main ideas was to
introduce data independence, preventing changes to the physical storage management from affecting
the application programs and vice versa.

A DBMS is a general-purpose software system which helps users to store, access and maintain
data in a uniform way. Data can be anything from simple values such as integers and character
strings to composite values to more complex data such as texts, images, sounds and videos.

A DBMS is based on a data model, which defines the constructs and formalisms available to
define, modify and access the data. The data model provides users with data structures which
hide many of the details of how the data is stored physically. It uses logical concepts such as
objects, their properties and interrelationships, which are easier for most users to understand than
the computer storage concepts [EN94]. Tt also supplies operations to access and modify data, and
integrity constraints to express what is considered to be a consistent database state. Data defined
using a data model is treated in a uniform way and stored in a database. This has the advantage
that application programs such as payroll, accounting and inventory applications, can access the
same data through a common interface, namely the DBMS, as depicted in figure 1.1. This prevents
data redundancy and allows simpler application development and maintenance.

Applicationq [i| Applicationy Applicationp I

7 DBMS
Database ﬁ

Figure 1.1: Application programs accessing a database through a DBMS

Modern DBMS have to support a variety of tasks and requirements [EN94, HS95]. A DBMS
manages persistent data, meaning that data exists longer than tasks run by application programs.
(Declarative) languages and operations need to be supported which allow the definition, modifica-
tion and retrieval of data. A DBMS should manage huge amounts of data efficiently. It should
provide, for example, means and techniques to optimise data retrieval. It should allow multiple
users to access the same data simultaneously, avoiding any problems which might evolve. An im-
portant concept to achieve this are transactions which are sequences of database modifications and
queries treated as single atomic operations. Additionally, a modern DBMS should support concepts
to provide data consistency, recovery from system crashes and database security and authorisation.
Commercial DBMS support most of these tasks and requirements in one way or another.

1.1.2 The Relational Data Model and Relational DBMS

The relational data model was introduced in 1970 by [Cod70]. Nowadays, it is the most widespread
data model used for database applications, and several commercial DBMS implementing the rela-
tional data model are available.

A relational database contains a set of relations. A relation, sometimes also called a table, has
a name and a well-defined structure, called a relation schema. The set of all relation schemas
of a database i1s called the database schema. A relation schema consists of a set of attributes
which represent the common properties of a real world object called an entity. Each attribute has

1.1. NON-TEMPORAL DATA MODELS AND DATABASE MANAGEMENT SYSTEMS 3

associated a name which is unique within the relation schema and a scalar domain such as integer,
real, string or date. A relation has to be in first normal form (INF), meaning that the domains
of the attributes in its schema may only be of scalar data types. In its simplest form, a relation
can be considered as a subset of the Cartesian product of all the attribute domains contained in
its schema. A single element of a relation is called a tuple. A relation is a set of tuples. The only
data structure supported by the relational data model is the relation.

Example 1.1 The following table Employees contains data about employees of a university

EmpID Name Salary | Dept
100 Moira 20000 IS
101 Adrian 9000 IS
102 Alain 9000 IS
103 Antonia 11000 IS
104 Gabrio 10000 IS
105 Andreas 9000 IS

and corresponds to the relation schema

R = (EmpID : INTEGER PRIMARY KEY,

Name : CHAR(20),
Salary : INTEGER,
Dept : CHAR(S))

Fach tuple describes the properties of an employee. For example, the tuple (100, Moira, 20000,
IS) contains data about employee Moira, including her employment number, salary and the de-
partment she works in.

The relational data model also defines operations which work on relations. A basic set of six
generic operations is sufficient to express all relational algebra operations. These basic operations
are the set union (U), set difference (<) and cross product (x) of two relations, and selection
(c), projection () and rename (3) operations on a single relation. The result of each of these
operations is another relation. The set union operation adds all tuples of both relations involved
into a single relation. The set difference returns all tuples of the first relation which do not occur in
the second. The cross product combines all tuples of the first with all tuples of the second relation.
The schema of the resulting relation contains all attributes of the first and the second relation.
Selection returns a subset of rows of a relation, and projection a subset of columns. The rename
operation allows the renaming of attributes in a relation. Other operations can be defined in terms
of these six operations. For example, a natural join (X) can be expressed using a combination of
a cross product, a selection, a projection and a rename operation.

Example 1.2 We would like to find the name and employment number of those employees earning
more than 10000. Using the relational algebra, this can be expressed using a selection and a
projection operation:

7[EmpID, Name](c[Salary > 10000](Employees))

The selection operation first selects those tuples in relation Employees whose value in attribute
Salary is more than 10000. The resulting relation is projected to a relation containing only the
columns EmpID and Name:

EmpID | Name
100 Moira
103 Antonia

4 CHAPTER 1. INTRODUCTION

Most of the relational DBMS support the standard language SQL [Dat89, DD93, MS93]. SQL
can be divided into three parts: the query language, the data modification language and the data
definition language. The query language allows the retrieving of data. It is based on the relational
algebra, but additionally supports features such as aggregation functions, grouping and ordering
of tuples. The data modification language is used to insert, update and delete data. Base tables,
indexes and views are created with the data definition language. A base table is a relation that
is physically stored in the database. Indexes are access paths to base tables which, for example,
allow a faster lookup of specific data in the table. In contrast to a base table, a view is a virtual
table. Tt is not physically stored in the database, but looks to the user as if it were [Dat89]. The
data contained in it is specified by a query.

SQL is a declarative and set-oriented language. SQL queries specify what data 1s desired, but
not how this data is retrieved. The query language compiler translates an SQL statement into low-
level operations, accessing the data on the storage-management level. Optimisation is performed
to select the most efficient execution of a query. The user specifies the desired result in the query
language, and the DBMS 1s free to select any execution plan that achieves this result. Query
optimisation 1s an important aspect of providing an efficient DBMS.

Example 1.3 The algebra expression given in example 1.2 written using SQL is as follows:

SELECT EmpID, Name
FROM Employees
WHERE Salary > 10000

A relational DBMS supports several integrity constraints, for example, primary keys, foreign
keys and referential integrity. A primary key is an attribute (or a set of attributes) of a relation
whose value uniquely identifies a tuple in a relation. In the relation schema R given in example 1.1,
attribute EmpID is denoted to be the primary key. A foreign key is an attribute (or a set of
attributes) of one table that contains only values of the primary key of another (referenced) table.

The referential integrity constraint for a relation demands that each of its foreign key values
must exist also as a primary key value in the referenced table. In the relational data model,
relationships among data are expressed using foreign keys and verified using referential integrity
constraints.

A major drawback of the relational data model is the requirement that relations have to be
in INF. This restricts the expressive power of the data structures. For example, hierarchical data
structures need to be flattened to be implementable in the relational model. To overcome this
drawback, the relational model has been extended to support, for example, non first normal form
(NFNT) or nested relations [SS91], or other complex attribute values.

1.1.3 Object Data Models and Object-Oriented DBMS

While the relational data model and its implementations nowadays are well-established, its model-
inherent restrictions — for example, the single data structure supported, the INF restriction on
relations and the impossibility to extend the functionality — lead to the development of new data
models. On one hand, the relational model was extended to overcome these deficiencies, while on
the other hand, the new paradigm of object data models evolved. Object data models overcome the
restrictions both on data structures and functionality. They provide for storing not only complex
values, but also behaviour in a database, thereby allowing applications to share code as well as
data.

Systems based on object-oriented data models originated with the object-oriented programming
paradigm. During the last decades, a variety of object data models have been proposed. An
overview is given, for example, in [Cat94].

The relational model is value-based. An entity is identified via a primary key. Object-oriented
data models are identity-based. An object can be referenced via a unique system-generated number

1.1. NON-TEMPORAL DATA MODELS AND DATABASE MANAGEMENT SYSTEMS 5

which is independent of the value of its primary key (if there is any) [Cat94]. This number is called
the object identifier (OID). Tt differs from a key by the fact that a key may change, and the tuple
gets a new identity, although it still represents the same real-world object. Additionally, an OID
has no semantics and usually is not visible to the user. A key is either generated by a program
written by an application programmer, or human-meaningful names are used. The same entity
may have different keys in different relations.

In a relational DBMS, information about a complex object is often scattered over many rela-
tions, which leads to a loss of direct correspondence between a real world object and its database
representation. Object-oriented data models allow the storage of all information concerning an en-
tity as a single database object. As depicted in figure 1.2, an object consists of an object identifier,
its state and behaviour. All three components are stored in the database.

Object Identifier

State

Behaviour

Figure 1.2: Components of an Object

The state of an object is specified by a data structure of arbitrary complexity. State values of
objects are constructed from a combination of simple attributes, reference attributes and complex
attributes. Simple attributes contain values of some atomic data type, for example, integers, reals
or strings. Reference attributes store the OID of another object. An object thus can comprise
other objects. Complex attributes store, for example, sets, bags or lists of values. The behaviour
of an object i1s specified by operations. These operations are also called methods. The code of these
methods 1s stored in the database as well.

An object actually 1s an instance of a type which defines both the state and behaviour of the
object. In this thesis, the term class denotes the set of all objects of the same type, or in other
words, a class shall be the extent of a type. So all objects in a class share a common definition but
differ in the values assigned to their attributes. Types may be reused in the sense that new types
can be derived from already defined types. This leads to a type hierarchy, where the dependencies —
which type 1s derived from which — are depicted. A more specialised type inherits all attributes
and methods of the type it is derived from, maybe overwriting some of the definitions.

Associations between objects can be expressed in two different ways. First, a reference to
another object may be implemented as a reference attribute. The OID of the referenced object is
stored implicitly within the state of the object. Second, associations may be regarded as a concept
of the data model used. This means that the model allows the specification of associations between
objects explicitly. The former approach leaves the burden of keeping the associations consistent
up to the application programmer, whereas the latter approach leads to a semantically richer data
model and DBMS, supporting means and ways to create these associations, to specify integrity
constraints over them, to check their consistency and execute operations over them.

1.1.3.1 The Object Data Model OM

There is no single object data model as there is a relational data model. Several different proposals
for object data models exist, differing, for example, in their semantic richness. Some models do
not support constructs to express constraints over objects or associations between them. They
have to be implemented by the application programmer using methods. In this thesis, the OM
model [Nor92, Nor93] is used to investigate temporal object-oriented databases. There are several
reasons for this.

6 CHAPTER 1. INTRODUCTION

First, the OM model is generic. It strictly separates typing from classification such that classifi-
cation structures model the roles of objects rather than their representation. The model is therefore
independent of any particular type system and programming language environment. This supports
our goal to specify a generic temporal data model. Second, the model is orthogonal with respect to
how the constructs of the model may be applied. As an example of its orthogonality, collections are
themselves objects and this enables arbitrary nesting of structures. Third, the model supports role
modeling, allowing an object to be member in several collections (or roles) simultaneously. Fourth,
the OM model 1s a semantically rich object data model. For example, it has explicit support for
integrity constraints and associations. Fifth, an algebra and query language was defined. Last but
not least, there exists a DBMS for this model.

As seen before, types describe the structure of objects, and instances of the same type are
collected in classes. Types may evolve over time, which is denoted as type evolution. Types can be
reused and refined which leads to type hierarchies describing the dependencies between supertypes
and subtypes. The OM model allows the same type definition to be used for several different
collections. This contrasts with the use of schemas in relational DBMS, where a schema is directly
attached to a relation. To create two relations with the same schema using SQL means that the
schemas have to be declared twice.

In the OM model, collections are used to group objects semantically. An entity may play several
roles during its existence. For example, a person studies computer science, then gets employed
in a company and later is promoted to a project manager. So, this person plays the roles of a
student, an employee and a manager. The same person, however, may also be a tennis player
simultaneously. This means that the same entity may even play several roles at the same time.
Collections in the OM model group objects with respect to the role they play. An object may
be a member of several collections at the same time. Each collection has a member type, which
denotes the type the objects contained in it must have. Since an object can be member of several
collections at the same time, it can be dressed with several different types simultaneously.

Classifications are represented by the bulk type constructor collection. Classification struc-
tures are built from collections linked by means of subcollection, disjoint, cover and intersection
constraints over these collections. Explicit support for the representation of relationships between
objects is given by association constructs based on a special form of collection referred to as a
binary collection. As a result, classification structures may be used to model relationship roles as
well as entity roles.

sportsman

[1:1] [1:4]
Addresses @ Persons TennisPlayers

A

cover

student employee
Students Employees Managers

Figure 1.3: Mini-World modeled in OM

Figure 1.3 depicts a mini-world modeled using the OM model. Shaded boxes are used to denote
collections with the name of the collection in the unshaded region and the type of the member
values in the shaded region.

A classification structure relates different collections with each other using a subcollection con-
straint. For example, all students, employees, managers and tennis players are persons. This
means, that collections Students, Employees, Managers and TennisPlayers are subcollections
of collection Persons. As time goes by, objects change their membership in collections. As men-
tioned before, a student eventually becomes an employee. The corresponding student object thus

1.2. WHY TEMPORAL DATABASES 7 7

migrates from collection Students to collection Employees, changing its type due to their different
member types. This is denoted as object evolution.

The OM model supports disjoint, cover and wntersection constraints over collections. These
constraints restrict the form of relationship between supercollections and their subcollections. The
disjoint constraint demands that a set of subcollections do not share a single object of their com-
mon supercollection, whereas the cover constraint demands that each object of the supercollection
appears in at least one of the subcollections involved in the constraint. The intersection constraint
relates a subcollection with its supercollections such that all the common objects of the super-
collections are also members of the subcollection. In figure 1.3, a cover constraint demands that
collections Students, Employees and Managers cover collection Persons.

Relationships between objects can be expressed explicitly in the OM model using associations.
An association has a source and a target collection, relating objects of the source collection with
objects of the target collection. In an association, cardinality constraints specify how often an
object may be related with other objects. For example, persons have addresses where they live.
For each person, at least one address shall be stored in the database. This means that an object in
collection Persons must be related at least once with an object in collection Addresses, denoted
using an interval [1 : %] where the asterisk expresses that there is no upper limit. On the other
hand, it is demanded that each address must be related to exactly one person, denoted as [1 : 1].
An association live-at with corresponding cardinality constraints relates the source collection
Persons with the target collection Addresses.

The OM model also defines a set of generic operations over unary and binary collections, called
the collection algebra. Additionally, it supports object and relationship evolution [NSWW96] and
defines restrictions over how they can evolve.

1.2 Why Temporal Databases 7

As mentioned earlier, non-temporal data models and DBMS only support functionality to access
a single state of the real world, usually the most recent one, and to change from one database
state to another thereby giving up the old state. There exist, however, many application domains
which need to have access not only to the most recent state, but also to past and even future
states, and the notion of data consistency must be extended to cover all of these database states.
[Sno95b] lists sixteen different application domains requiring the storage and retrieval of time-
varying data. Examples of such application domains are financial applications (e. g. the history of
stock market data), insurance applications (e. g. when were which policies in effect), reservation
systems (e. g. when is which room in a hotel booked), medical information management systems
(e. g. patient records) and decision support systems (e. g. planning for future contingencies).
[Sno95b] mentions that in fact, it is difficult to identify applications that do not involve the
management of time-varying data. One reason why the management of time-varying data is not
considered for most applications is the lack of appropriate support by commercial DBMS. Nowa-
days, if time-varying data has to be managed, special application programs must be developed.

1.3 Handling Temporal Data

The first step when building a database application is analysing the part of the real world which
shall be modeled and captured by the database. On one hand, the real world objects, their
relationships among each other, together with restrictions on these objects and relationships, have
to be determined. On the other hand, the required operations performed on these objects and
relationships need to be specified. This leads to database and functional requirements [EN94].
The database requirements lead to the specification of data types, associations and integrity
constraints. The functional requirements consist of the user-defined transactions that will be ap-
plied to the database, including both retrieval and modification of data. In the case that the DBMS
can be extended with functionality, data types (schemas) are defined according to both functional

8 CHAPTER 1. INTRODUCTION

and database requirements. Otherwise, only the database requirements influence the definition of
data types, and the functional requirements are built into application programs. This step from a
mini-world to the different requirements 1s depicted in figure 1.4.

Functional Requirements Database Requirements

N N

Data Types Associations Constraints
Figure 1.4: Database Design

Figure 1.4 shows that the specifications for a database application do not only consist of data
types. Operations, associations and integrity constraints also play important roles when building
a database application. Of course, this also holds for application domains using time-varying data.
Thus, adding time attributes to data types in order to record validity time periods of data is not
sufficient for temporal database applications. Means and ways are needed to specify operations
to retrieve and modify temporal data and express integrity constraints which hold over several
database states.

1.3.1 How are Data Models affected when Time is added?

As mentioned before, a DBMS is based on a data model which defines constructs and formalisms
with which all of the data can be described, modified and accessed in a uniform way. A data model
supplies a set of concepts to describe the data structures, integrity constraints and retrieval and
update operations. A data model M = (DS, OP, C) thus consists of three components — the data
structures DS, operations OP and integrity constraints C.

A temporal data model M = (DST| 0PT, ¢T) should enhance all the concepts contained in
the three components of a data model with respect to time. Data structures should be adapted
such that they can store time-varying data, leaving it up to the user to choose the level of what
data units shall be timestamped. Algebra and modification operations should be redefined using
temporal semantics, for example, using the notion of snapshot reducibility [Sno87]. Snapshot
reducibility defines the temporal semantics of an operation using the semantics of its non-temporal
counterpart applied at each time point.

Additionally, for each expressible constraint in the non-temporal data model ¥, the temporal
data model M7 should provide a temporal version. The semantics of temporal constraints may also
be defined using the notion of snapshot reducibility.

1.3.2 How can Support for Temporal Databases be implemented?

Modifying or extending a data model, for example, to support time-varying data, means that the
implementation of the model — the DBMS — must be changed as well. Since most DBMS can be
considered as black boxes, the corresponding change of the software has to be done by the DBMS
supplier. Other approaches to achieve some support to handle time-varying data are building the
temporal functionality into the database applications or using the extensibility inherent to some
DBMS to support special temporal data structures and behaviour. In fact, four different ways to
implement temporal database applications can be identified:

1.3. HANDLING TEMPORAL DATA 9

1. Use type date supplied in a non-temporal DBMS and build temporal support into applica-
tions.

2. Implement an abstract data type (ADT) for time.
3. Extend a non-temporal data model to a temporal data model.
4. Generalise a non-temporal data model to a temporal data model.

The first two approaches do not involve any changes to the DBMS. The system is taken as-is, and
all implementations need to be done by the database designers and/or application programmers.
The last two approaches can only be achieved by changing the DBMS itself.

The four approaches of course differ in what kind of support for time-varying data can be
achieved and how difficult this is. At present, only the first two approaches can be used in practice.
In this thesis, approaches 2, 3 and 4 are investigated and the corresponding prototype systems
presented. This way, the advantages and disadvantages of each approach are identified.

Unfortunately, there exist no temporal DBMS and hardly any prototype systems. Many tem-
poral data models have been proposed, but almost none of them have actually been implemented.
We believe that such prototype systems are necessary for the verification of a specific approach
and the investigation of whether or not the approach is implementable. They are useful to show
the power (or weakness) of a model. [B6h95] provides a list of thirteen prototypes dealing with
time-varying data in one way or another. They state that the lack of such prototypes is one reason
why current commercial DBMS provide only limited temporal functionality.

Now, the four approaches introduced above are discussed in more detail. First, the DBMS used
is assumed to be a black box which cannot be changed. Then, the question how DBMS software
itself may be enhanced to support temporal database applications is discussed.

1.3.2.1 Temporal DBMS without Changes to existing Database Technology

Use Type date in a Non-Temporal DBMS For this approach, the only assumption is a data
type date. Type date can either be supported directly by the DBMS or dates could be mapped, for
example, to another system supported data type. With a type date, user-defined time attributes
such as birthdates can be specified. Additionally, it is possible to timestamp data by adding special
time attributes to schemas. A time interval, for example, can be mapped to two attributes of type
date, denoting the lower and the upper bound of the time interval. Any temporal semantics,
however, have to be built into the application program itself. Temporal operations and temporal
integrity constraints have to be provided by the application programmer.

This means that the burden is on the database application programmer as he has no specific
support whatsoever from the DBMS. This approach is error prone, and a lot of time needs to be
invested into the additional coding of the temporal framework used for the applications. This part
of the code is usually reinvented by each company which deals with time-varying data. There is
no standardised way of implementing temporal database applications, which eventually will lead
to more problems, for example, when parts of the applications need to be modified or are replaced.
The lack of direct support such as a temporal query language, leads to complex applications
which will be difficult to maintain. Since the temporal semantics are completely unknown to the
underlying DBMS, we argue that this approach also leads to inefficient application programs.

In our opinion, the use of a commercial non-temporal DBMS and a type date might be one of
the solutions for the moment, however this approach to handling temporal data is not adequate in
the long term.

Implement an Abstract Data Type (ADT) for Time For this approach, it is assumed that
the DBMS used supports facilities to implement abstract data types. Object-relational and object-
oriented DBMS allow users not only to specify data structures, but also to extend the functionality
of the system and to store it in the database. This is not possible using a pure relational DBMS.

10 CHAPTER 1. INTRODUCTION

We can implement an ADT for time, including, for example, data structures for sets of time
intervals and operations to calculate the union, intersection and difference of sets of time intervals
as proposed in [SN97b]. Similar approaches using an ADT for time are, for example, described in
[GO93, DW92, WD93]. This ADT then can be used to build temporal semantics into application
programs. To relieve the database users from having to implement this ADT themselves and to
guarantee a common basis for different applications, a library would be helpful.

The greatest disadvantage of an ADT for time is the fact that the DBMS cannot make use
of the special semantics time has, for example, to optimise the retrieval of temporal data. Addi-
tionally, neither writing temporal queries or updates using the ADT nor migrating legacy code is
straightforward.

Extending the functionality of a DBMS using an ADT makes sense where the additional func-
tionality only concerns part of the data or is very specific. However, time-varying data and temporal
operations usually are neither restricted to a small part of data nor very specific. In fact, the class
of application domains dealing with time-varying data is huge, and usually, not only a small part
of the data is time-varying. Thus it i1s necessary to build temporal support directly into the data
model and the corresponding DBMS.

1.3.2.2 Temporal DBMS with Changes to existing Database Technology

Extend a Non-Temporal Data Model Extending a non-temporal data model to a temporal
data model in our terms means that the concepts already supported by the non-temporal models
are used to specify the temporal extension. New concepts are introduced where it is awkward or
impossible to express them in the non-temporal model.

For example, timestamping data is usually achieved by extending the non-temporal schemas
or types with special time attributes. Query languages and algebras are extended with additional
operations to express a temporal join or temporal selection operations. More expressive tem-
poral data models define a temporal algebra which refer to the special time attributes for time
calculations. This approach of extending schemas and query languages has been chosen for the
relational data model (e. g. [Sar93, NA93, Sno93, Sno95b]) as well as for semantic data models
(e. g. [EW90, EWK93a]) and object data models (e. g. [RS91, KS92b, BFG96]).

In fact, this schema extension approach is the most widely used approach to define temporal
data models. The advantage is that only parts of the model must be changed, for example, the
query language and integrity constraints. With respect to an existing DBMS, this would mean
that only part of it would have to be changed. Access methods and storage structures, for example,
are not affected.

This advantage, however, also directly leads to the disadvantages of this approach. By reusing
the existing concepts of the non-temporal data model, the temporal data model automatically
inherits the restrictions of the non-temporal parent and additionally, due to the reuse of existing
concepts, the temporal concepts turn out to be not as general and orthogonal as desired. By adding
additional time attributes to relations, only specific data structures — for example tuples — can be
timestamped. Since collections of entities, types or integrity constraints are created and eventually
dropped, it can also make sense to keep track of the history of each of these constructs.

Proposed extended temporal data models neglect issues like these. They usually concentrate
on special features such as temporal data structures, query language design, temporal algebra or
temporal integrity constraints.

Since existing DBMS have to be adapted anyway if the underlying data model is modified, we
argue that this approach only goes half of the way.

Generalise a Non-Temporal Data Model A more promising way is to generalise the whole
data model to support temporal data. All three components — data structures, operations and
integrity constraints — have to be generalised. With respect to data structures, this means that the
type or schema of objects is not simply extended, but a new, simple and orthogonal concept needs
to be found which does not rely on any type specific assumptions. Simple means that it should

1.4. CONTRIBUTION 11

be easily implementable, but expressive enough to timestamp different units of data. Orthogonal
in this context means that this concept is not restricted to specific constructs of the data model,
for example, to tuples or attributes. It should be left to the user to decide which granularity
of data, and even which constructs of the model (for example, types, collections, constraints or
even databases) shall be timestamped. Temporal operations (including updates) and integrity
constraints shall then refer to this new concept. This approach is more promising to find the key
concepts needed to support the handling of temporal data.

With respect to generalising temporal algebra operations, a step has been made by defining
temporal completeness [BM94, BJS95] which introduced useful requirements with respect to tempo-
ral data and temporal queries. This proposal lacks, however, to define requirements for constraints
and focuses on timestamping data in 1NF relations.

1.4 Contribution

The main contribution of this thesis is the introduction and discussion of the generalisation ap-
proach for temporal data models. Generalisation can be used as a guideline when developing a
temporal data model which is based on an existing non-temporal data model. As mentioned earlier,
the generalisation approach considers all aspects of the non-temporal data model when turning it
into a temporal one. The result is a more general and orthogonal temporal data model than those
based on the extension approach.

The results presented in this thesis cover research in the area of both temporal relational and
temporal object-oriented data models. In this context, three different projects were initiated and
successfully completed by the author of this thesis: The implementation of TimeDB, the definition
of the temporal object data model TOM and different implementations of TOM. Additionally, the
various proposals of temporal data models introduced or defined in this thesis are compared with
each other.

Implementing TimeDB

The first project was the implementation of the bitemporal relational DBMS TimeDB. TimeDB
is based on the generalisation approach, however only to a limited extent. Temporal relations,
for example, are extensions of the non-temporal relations with timestamp attributes. TimeDB
supports the temporal query language ATSQL2 [SBJS96b, SBJS96a]. ATSQL2 is an extension to
SQL to support the management of time-varying data. It was designed by an international group
of researchers (Michael Bohlen, Aalborg University; Christian Jensen, Aalborg University; Richard
Snodgrass, University of Arizona; Andreas Steiner, ETH Ziirich). TimeDB was implemented during
the design process of ATSQL2. It influenced the design of ATSQL?2, for example, the orthogonal
treatment of valid time and transaction time, and helped to identify and eliminate weaknesses
of the language. TimeDB is built as a front-end to the commercial DBMS Oracle. With this
layered approach, important concepts of the underlying commercial DBMS such as transactions,
persistence, recovery, security and authorisation could be used. Implementing them from scratch
would have been too time-consuming. TimeDB is the only temporal relational DBMS providing an
extended SQL which supports temporal queries, a temporal data definition and data modification
language and temporal integrity constraints. It is used at universities for demonstration purposes
and 1s currently extended in another research group with respect to physical storage management
of temporal data.

The Temporal Object Data Model TOM

The second project was to define and apply the generalisation approach with respect to object-
oriented data models. This project was based on the non-temporal object data model OM due
to 1ts genericity, orthogonality, semantic richness, support for role modeling and the existence
of a corresponding DBMS. Applying the generalisation approach to this data model has led to

12 CHAPTER 1. INTRODUCTION

the generic, general and orthogonal temporal object data model TOM. TOM is generic in the
sense that it is independent of any specific type system. General means that data structures,
operations and constraints of the non-temporal data model OM are generalised into temporal data
structures, temporal operations and temporal constraints, using the notion of snapshot reducibility
to define their semantics. The model is orthogonal in two senses. First, anything which is an object
(entity, collection, constraint, type or even database) may be timestamped. Second, valid time and
transaction time are treated as orthogonal time lines, having the same set of operations defined on
them. The constructs and formalisms to achieve such a temporal data model are described in this
thesis.

Implementing TOM

The therd project was to implement the temporal object data model TOM. Two different approaches
were investigated. First, the temporal data model TOM was implemented as a single-user DBMS
called TOMS using Prolog. As will be shown, the intrinsic generality of TOM and its orthogonality
are major contributing factors allowing a simple implementation. Second, the data model TOM is
implemented as an ADT for the commercial object-oriented DBMS O,. This thesis sketches both
approaches and compares them with each other.

Comparison

This thesis also describes an evolutionary path from temporal relational to temporal object data
models which once more shows the generality of the temporal object data model TOM. This evo-
lutionary path allows the comparison of the different temporal data models based on the extension
approach with the generalised data model TOM and the identification of the drawbacks of the
extension approach. Additionally, ideas are presented how the general concepts found in TOM
could be achieved in temporal data models which are based on the extension approach.

The generalised temporal object data model TOM presented in this thesis also provides insight
into how a more general form of an extensible DBMS — based on the ideas of having extensible
object identifiers, algebra operations and constraints — could be provided which also supports other
specialised applications managing, for example, spatial data or versions of objects.

1.5 Structure of the Thesis

Chapter 2 presents the different concepts and notions proposed in various temporal data models
which either help to distinguish temporal data models or are essential to all temporal data models.

Chapter 3 describes different extensions of relational, extended relational, semantical, functional
and object data models for the management of temporal data. It also shows that proposed temporal
data models are based on eztending the underlying data model on the type level.

Chapter 4 describes the prototype temporal relational DBMS TimeDB which implements AT-
SQL2. ATSQL2 extends the query language SQL with temporal features such as a temporal query
language, a temporal data definition and modification language, temporal views and temporal
constraints. The implementation of TimeDB as a front-end to the commercial DBMS Oracle is
presented.

Chapter 5 introduces the temporal object data model TOM which is a temporal generalisation
of the OM model. The TOM data model defines temporal objects, temporal collections, temporal
associations, a temporal collection algebra and temporal constraints. Due to the timestamping
approach used in TOM, anything considered to be an object may be timestamped. This leads to
the insight that also meta-data can and should be timestamped, a feature which automatically
evolved in the TOM data model.

Chapter 6 describes how the temporal object data model TOM is implemented. Two different
approaches are shown. The first approach is a direct implementation of the TOM data model. The

1.5. STRUCTURE OF THE THESIS 13

second one is based on building an ADT for time using the commercial object-oriented DBMS Os.
Additionally, the drawbacks of the ADT approach are discussed.

Chapter 7 finally compares the different temporal data models introduced and discussed in this
thesis. It shows that the temporal data models based on the extension approach can be viewed
as special cases of the temporal object data model TOM. Additionally, the issue of timestamping
meta-data 1s considered in more detail and motivated, and a solution for temporal data models
based on the extension approach is presented.

14

CHAPTER 1.

INTRODUCTION

Chapter 2

Key Concepts used in Temporal
Data Models

This chapter introduces the key concepts used in the various proposed temporal data models. As
seen in the previous chapter, a data model M consists of data structures DS, operations OP on these
data structures, and constraints C, namely M = (DS, OP, C). A femporal data model thus should
support temporal data structures which allow the storage of temporal data, temporal operations
which access or modify instances of these temporal data structures and are able to use their special
semantics, and temporal constraints.

The first question discussed 1s how time itself can be modeled in a temporal data model or
DBMS. Having decided on how to represent time in a data model, the question arises whether
there exist different time dimensions with respect to which data shall be stored. For example,
the time point when data is updated in a database does not necessarily need to be equal to the
time point when the part of the real world represented by this data has changed. This distinction
of time dimensions leads to several kinds of temporal databases. Then, the decision has to be
made on which level data shall be timestamped. With respect to temporal operations, this chapter
introduces the notions of coalescing and snapshot reducibility.

2.1 Modeling Time

The temporal database community has used mainly three basic models for time. They see time
either as continuous, dense or discrete. Another question is how time points and time intervals are
represented, and which operations and comparison predicates are defined on them. This section
explains the various notions of time and how they affect the specifications of temporal data models.

2.1.1 Different Models of Time

What is time? Saint Augustine said he knew precisely what time is, provided no one asked him
to explain 1t. While we do not want to go into this philosophical discussion, we still need to think
about how we measure and model time in temporal data models.

Time seems to be continuous by nature. Scientists assume that our universe started with the
Big Bang, and they assume this to be the start of time. They are not sure, though, whether or
not our universe (and with it time) will have an end [Haw88].

For daily life, ways to quantify time and to specify certain points in time with different gran-
ularities such as years, months, days, hours, minutes and so on were introduced. Calendars are
used to structure time.

Modeling time in a DBMS demands the exact specification of what time is assumed to be.
This does not necessarily mean that all real world aspects of time have to be captured. A more

15

16 CHAPTER 2. KEY CONCEPTS

promising way is to model time such that it can easily be integrated into the data model and that
it supports most aspects of time needed in different application domains.

The temporal database community has come up with three basic models for time: the con-
tinuous model, the dense model and the discrete model. These models have been exhaustively
discussed in the literature, for example, in [GV85, GY91, Sno95b]. Time is usually mapped to a
set of numbers which are totally ordered with respect to the comparison predicate <. Thus time
can be represented as an axis in a coordinate system.

The continuous model views time as being isomorphic to the real numbers. Each real number
corresponds to a point in time. So between any two time points on the time axis, there exists
another time point. This approach models time most accurately. Since temporal data models are
used on digital machines, it is not possible to map this model of time losslessly to computers. The
dense model views time as being isomorphic to the rational numbers. The discrete model maps time
to integers [CT85]. A successor function can be defined in the discrete model of time. Between a
time point and its successor, no other time points exist.

[Sno95b] views the choice of these three alternatives as largely unimportant. They argue that
for a time model being implemented on a discrete computing device, the view of time must be
necessarily discrete. We follow this view. While discussion of these alternatives might be interesting
on a philosophical level, we feel it not to be of any practical importance for the work presented
here.

2.1.2 Chronons

The previous section has shown that time can be mapped to an underlying time axis. The time axis
can be viewed as a set of time points. The smallest non-decomposable time unit on the time axis is
called a chronon [TCG193]. So a particular chronon is a subinterval of fixed duration on the time
axis. As stated above, a smallest non-decomposable time unit is needed, since digital computers
only support a limited granularity for real numbers. For the continuous and dense model of time,
a chronon covers a small part on a time axis, whereas a time point is a single point on the time
axis. For the discrete model, chronons and time points can be assumed to be the same. They can
be mapped to integer numbers.

2.1.3 Time Instants and Events

A time instant 1s in fact a time point on an underlying time axis, whereas an event is an instanta-
neous fact, for example, something occurring at a time instant [TCGT93, Jea93]. As seen above,
a coarser granularity of time units is used in the models of time, called chronons. Modeling time
instants or events thus means that they have to be mapped to chronons. An event thus is said to
occur at a chronon t if it occurs at any time instant during the chronon represented by t.

2.1.4 Time Intervals and Temporal Elements

A temporal database stores facts and, for example, the time when they are true in the real world.
Thus, from a theoretical viewpoint, all the time instants a fact 1s true have to be stored in the
temporal database. In the case that this set of time instants contains only continuous instants, it
can be written as a time interval. So time intervals can be used to model the time period during
which a fact was true in the real world.

A time interval represents a period of time having a starting time instant S and an ending
time instant E as its lower and upper bound respectively. Time instants .S and E are the smallest
and the highest value in the set of continuous time instants. Lower and upper bounds can be
compared with each other with comparison predicates such as < and <. [Gad88] lists the following
possibilities of specifying temporal intervals:

2.1. MODELING TIME 17

[SeE] = {t|S<t<E}
(SeFk) = {t|S<i<E}
[SeF) = {t|S<t<E}

(Sl = {t|S<t<E}

where ¢ denotes a time instant.

Thus a time interval can be represented, for example, as an interval [S < F) having a closed
lower and an open upper bound.

For intervals, the set-theoretic operations union, intersection and difference are defined. These
set operations are important to do reasoning about temporal facts. Set intersection is used, for
example, to calculate the time period during which two facts were simultaneously true. The overall
validity time period of several facts can be determined using set union. The time period a fact
is true while another one is not can be calculated using set difference of the corresponding time
periods.

These operations however are not closed with respect to intervals. The union of two non-
overlapping intervals is defined to return a set of intervals. The difference of two intervals may
return zero, one or two intervals. The same holds for time intervals.

Example 2.1 Assume three time intervals I; = [1980 &1990), I» = [1992 &1994) and I3 =
[1975 <1996). The union of Iy and I returns a set of intervals:

L Ul = {[1980<1990),[1992<1994) }
The difference of the time intervals Iy and I3 results in an empty set of time ntervals
Lel;={}
whereas the difference of the time intervals I3 and Is returns a set of intervals:

Is =1, = {[1975 <1992), [1994 <1996) }

To overcome this drawback, [GV85] introduced temporal domains which are finite unions of
time intervals. [Gad86] called these sets of intervals temporal elements. The results of the union
and difference operations given in example 2.1 are temporal elements.

In TimeDB, time intervals are used, whereas the temporal object data model TOM uses tem-
poral elements.

2.1.5 Comparison Predicates for Time Intervals

[All83] introduced a set of thirteen temporal comparison predicates for time intervals. These
predicates are exhaustive in the sense that they describe all possible relationships between two
time intervals. They are shown in table 2.1. I; and I, are time intervals, and begin(I) and
end (I) represent the starting time instant S, and, the ending time instant E, respectively, of time
interval I =[S - E).

A smaller set of temporal comparison predicates for time intervals has been proposed in
[SDJT93]. They extend the semantics of some of these comparison predicates such that they
can also be used to compare time instants with time instants and even time intervals with time
instants. [SDJ193] show that their comparison predicates for time intervals and time instants
together with the functions begin and end have the same expressive power as the comparison
predicates proposed in [All83]. The difference between their proposal of temporal comparison
predicates and those proposed in [AllI83] is that they need the functions begin and end to access
the starting and ending points of time intervals in order to achieve the same expressive power.
Their set of comparison predicates for time intervals is shown in table 2.2.

18 CHAPTER 2. KEY CONCEPTS

| Comparison Predicate | Equivalent Predicates on Endpoints |

I, before I end(I1) < begin(I2)
I, after Iy end(I2) < begin(Iy)
I) during I» (begin(I1) > begin(I2) A end(l1) < end(l2))V
(begin(I1) > begin(I2) Aend(ly) < end(I3))
I, contains I (begin(I2) > begin(I1) A end(l2) < end(l1))V
(begin(l2) > begin(I1) A end(l2) < end(I1))
I, overlaps I begin(I1) < begin(l2) A end(I1) > begin(l2) Aend(I1) < end(I2)
I, overlapped by Is begin(Iy) < begin(l1) A end(I3) > begin(ly) Aend(I2) < end(I7)
I meets I end(I1) = begin(I2)
I, met by I end(I2) = begin(Iy)
I, starts I» begin(Iy) = begin(l2) A end(I1) < end(I2)
I; started by I, begin(Iy) = begin(l2) A end(I) < end(I)
I, finishes I begin(Iy) > begin(l2) A end(I) = end(I2)
I finished by I begin(Iy) > begin(ly) A end(I) = end(I)
11 equals I, begin(Iy) = begin(l2) A end(I) = end(I)

Table 2.1: Allen’s thirteen temporal comparison predicates [All183]

| Comparison Predicate | Equivalent Predicates on Time Instants |

I, precedes I, end(I1) < begin(I2)
I, overlaps I dt:telh ntel
I meets I end(I1) = begin(I2)
I contains I begin(Iy) < begin(l2) A end(I1) > end(I2)
L =1 begin(I1) = begin(l2) A end(I) = end(I2)

Table 2.2: The set of temporal comparison predicates for time intervals used in MultiCal [SDJ+493]

2.2 Notions of Time

In our daily life, events are usually scheduled with respect to a single time line. There exist
different calendars and thus different ways to refer to the same time instants or time intervals. The
underlying time line, however, 1s more or less the same for everybody on this earth.

For temporal databases, the existence of more than one time line was proposed in order to
capture different aspects of the relationship between time and data. The following subsections
introduce different notions of time denoting different time lines. These are then used to distinguish
different forms of temporal databases in terms of their ability to model the various forms of temporal
properties of data.

2.2.1 User-defined Time

A distinction can be made whether or not the timestamp added to data is interpreted by the
DBMS (for example, during query evaluation). An uninterpreted timestamp, for example, a value
in an attribute Birthday, is called user-defined time [SA86], because the user himself interprets
the given time information, whereas the DBMS treats this temporal data as just another attribute.

Data models support user-defined time by offering, for example, a type date or timestamp for
attribute values. Values can be any time instant referring to past, present or future time points.
User-defined time values are supplied by the user and may be updated.

The distinction of interpreted or uninterpreted time attributes arises because proposed temporal

2.2. NOTIONS OF TIME 19

data models use the data structures of the underlying non-temporal data model to store temporal
data by extending the schemas with special time attributes. In case a query is evaluated using
temporal semantics, the algebra operations access these special time attributes and thus interpret
them. User-defined attributes are never accessed this way.

2.2.2 Valid Time

One approach when proposing a temporal data model is to be able to denote when facts are true
with respect to the real world. For example, we would like to know when we deposited money on
our bank account, and when we withdrew 1t again. Sometimes, we also would like to record future
events, for example, when reserving tickets for a play in a theatre — we know when the play will
be given and when we would like to see it.

This notion of time, recording data with respect to when it was, is or will be valid in the
real world, is called valid time. A valid-time interval thus records the time period when a fact is
true. It is interpreted by a DBMS supporting valid time, for example, during query evaluation
or constraint checking. Valid time must be supplied by the user when adding or modifying data.
Valid-time values can be updated.

2.2.3 Transaction Time

Besides recording data reflecting the history of the real world, another history of data has been
detected to be relevant for temporal databases. Often, data cannot be recorded in a database in
real time, for example, due to a delay in the processing of information. So there might be a time
gap between data being valid in the real world and recording the data in a database. Sometimes,
it is also necessary to keep track during which time periods facts are stored in a database. This
notion of time is called transaction time.

We have seen that valid time is used, for example, to record the history of bank account deposits
and withdrawals. This can be viewed as the history of value changes. Assume that a clerk records
a wrong date of withdrawal or a wrong amount. In this case, a correction of the wrong values has
to be made. This must be recorded, for example, since the bank also wants to know when values
of bank accounts were corrected (and not only when they were changed). When the bank clerk
updates the values, the system automatically sets the transaction-time interval of the old values
to end at the current time, and the transaction-time interval of the corrected values to start at
the current time. Thus, recording transaction time can also be viewed as recording the history
of corrections. This means that data timestamped with transaction time provides for querying
the history of data manipulations and errors, whereas data timestamped with valid time allows
the querying of value changes. Classical non-temporal updates do not differentiate between a
correction and a change of data [GY88, GN93].

It makes perfect sense to query the history of corrections just as the history of the real world is
queried. A temporal DBMS thus should be able to interpret transaction-time timestamps during
query evaluation or constraint checking in the same way as it interprets valid-time timestamps.
So, valid time and transaction time can be viewed as orthogonal time lines.

Values for transaction time cannot be later than the current time, since transaction time reflects
the time when a database operation is actually executed. The DBMS itself records transaction
time. It also does not make sense to update transaction time, since a database operation of a
committed transaction can never be undone. The only way to change a committed database
operation is to do an inverse transaction, which, however, is executed at a later time point and
thus leads to another transaction-time record.

2.2.4 Other Time Lines

So far, three different notions of time distinguished in temporal databases were introduced. There
exist, however, other time lines which might be interesting to be recorded. For example, it might

20 CHAPTER 2. KEY CONCEPTS

be necessary to record when facts were believed to be true [DLHC95]. Such notions of time have
hardly been considered or supported in temporal database proposals.

Data models supporting several notions of time need a more flexible approach than those used
in temporal database research so far. In Bitemporal ChronoSQL [Pul95], valid time and transaction
time were treated orthogonally. This means, that all retrieval operations and constraints referring
to valid time can also be used such that they refer to transaction time. Exceptions are the modifi-
cation operations. Since modifications referring to transaction time are handled by the DBMS, the
modification language for transaction time updates is different from updates with respect to valid
time. The user may update the valid time of a fact, he is not allowed to update its transaction
time, however. The idea of treating these time lines orthogonally was later also used for ATSQL2
[SBJS96b, SBJS96a).

We argue, however, that this orthogonality not only holds for valid and transaction time. All
time lines should be treated orthogonally. This means that actually only the functionality with
respect to one time line needs to be specified. Then, all other notions of time shall have the same
functionality.

2.3 Temporal Databases

The previous section has introduced different notions of time. In most proposals of temporal data
models, one or two of them are interpreted by a system. Based on these interpreted time lines,
[SA85] introduced several kinds of databases differentiated by their ability to represent temporal
information.

According to the taxonomy of temporal databases presented in [SA85], four categories of
databases are now discussed with respect to the valid- and transaction-time lines introduced above.

2.3.1 Snapshot Databases

Non-temporal databases capture the real world, as it changes dynamically, by recording a certain
state, for example, the current one. Modifying the state of a database is done using update
operations such as insertion, deletion or update. Past states of the database are overwritten. This
is what currently available commercial DBMS support.

This sort of database is called a snapshot database, since it only captures a single snapshot
of the real world, usually the current one. Figure 2.1 depicts a snapshot database with respect
to valid time and transaction time, where it is assumed that the current state is stored. Only a
single database state is recorded, denoted by a container, with respect to the current time. When
executing modification statements on such a database state, this state is deleted and the new state
is stored. So, after a successful transaction, there is no way to refer to a previous state.

In snapshot databases storing the current state of the real world, it cannot be distinguished
between when a fact is true and when it is recorded. Usually, it is assumed that a fact stored in
a snapshot database is also true in the real world. If this does not hold anymore, the fact in the
database is modified.

The relational data model [Cod70] and the Object Model [Nor92, Nor93], introduced in sec-
tion 1.1.2 and section 1.1.3.1 respectively, are examples for data models supporting snapshot
databases.

2.3.2 Historical Databases

Historical databases record the history of data with respect to the real world. As we have seen,
the dynamics of the real world is captured along the valid-time axis. Thus, a historical database
records database states along the valid-time line. Past, present and future database states may
be recorded. This can also be viewed as storing the history of value changes with respect to the
real world. This i1s depicted in figure 2.2, where each container denotes a different database state

2.3. TEMPORAL DATABASES 21

Valid Time
A

now+ — — — — — [3

\

\

\

\

i > Transaction Time
now

Figure 2.1: A snapshot database in context of valid time and transaction time

in the historical sequence of states. Each change in the real world leads to a new container. As
mentioned before, the user must supply the valid time of a fact.

Historical databases require a more sophisticated query language, supporting reasoning about
time, selecting data of specific database states and so on. Modification statements need to specify
which database states shall be affected by the update operation. Note that updating the valid
time of a fact cannot be recorded. This is only possible if the time when a fact is stored in a
database — the transaction time — is also recorded, enabling the different valid times of a fact to
be distinguished. Thus, in a historical database, data is still physically deleted when corrected.

Historical databases are the most common ones and many of the applications listed in section 1.2
are designated to be implemented using historical databases.

Relational models supporting historical databases are proposed, for example, in [JMST79, Cli82,
CW83, Ari86, LJ88, NA8S, Sar90a, Lor93, CT85, GV85, Tan86, CC87, Gad88, GY88, TAOSKI,
TG89]. Object data models supporting valid time are proposed in [EW90, SC91, Wuu91, CG92,
KS92b, BFG96].

Valid Time
A

now-{----------

o2aa

> Transaction Time

0444
=

n

Figure 2.2: A historical database in context of valid time and transaction time

2.3.3 Rollback Databases

A database recording the changes to the database itself is called a rollback database. A rollback
database thus records data along the transaction time line and can be viewed as an append-only
database. Rollback databases do not record future database states, since the system itself keeps
track of transaction time and does not know anything about future events.

Whenever a modification statement is executed, the system records a new database state with

22 CHAPTER 2. KEY CONCEPTS

respect to the time when the modification was done in the system while keeping the old states, as
shown in figure 2.3. No data 1s ever physically deleted. A deletion of data, for example, a tuple,
is done by setting its transaction-time interval to end at the execution time of the corresponding
statement. A transaction-time interval thus can be viewed as the time period data would have
been stored in a snapshot database.

Rollback databases can be used for linear versioning. The time of modification of an object can
be used to distinguish the different versions of an object.

Proposals for relational data models supporting rollback databases can be found in [SRH90,
JMRI1]. Object data models supporting transaction time are proposed in [BM88 KGBW90,
SRH90, KS92a).

Valid Time
A

- 000

|
I
|
|
|
|
|
|
|
| .)
T » Transaction Time
now

Figure 2.3: A rollback database in context of valid time and transaction time

2.3.4 Bitemporal Databases

A bitemporal database is a combination of a historical and a rollback database. Figure 2.4 shows
a bitemporal database, recording database states with respect to both valid time and transaction
time.

A bitemporal database thus has the properties of both historical and rollback databases. As
already mentioned, it is now possible to record updates of valid time in this kind of database.

Bitemporal relational data models are described in [SA85, SA86, Sno87, Sno95b, SBJSI6b,
SBJS96a]. Object data models supporting bitemporal databases in [CS88, KRS90, RS91, Scidl,
EAOPY3, GO93, WD93, Sci94].

Valid Time
A

now- - -

ooo
ocoom
oooo

> Transaction Time

od--
=

n

Figure 2.4: A bitemporal database in context of valid time and transaction time

2.4. TIMESTAMPING DATA 23

2.4 Timestamping Data

In temporal data models, facts are represented as data units having a timestamp which expresses
during which time period they were valid in the real world and/or stored in the database. The
question now is what a data unit is considered to be. Is it a single value? Is it the combination
of several property values belonging to the same entity? Is it the set of several entities which are
grouped in some way? Or is it that part of the real world which 1s modeled in the database?

The main questions when timestamping data are at what level of granularity data units are
stamped and what kind of timestamp s used. The following two subsections discuss these issues.

2.4.1 What is Timestamped ?

As mentioned before, temporal databases store facts stamped with time periods of different se-
mantics. The proposed temporal data models can also be distinguished by the level of granularity
which is assumed when timestamping data units. A data unit can be anything from an attribute
value to a tuple or object to a collection of tuples or objects to a database. Additionally, even
schemas or constraints could be considered to be timestamped.

For full generality, all of these possibilities of timestamping should be supported in a temporal
data model, although we accept that this full generality is not always needed nor wanted. Our aim
18, though, to provide a general temporal data model, where the decision of which constructs and
what granularity of data units should be timestamped is left to the user.

Research papers in the area of temporal relational databases discuss two levels of timestamping
data. None of the previously proposed temporal data models discusses timestamping data on all
levels listed above. The following three sections introduce the approaches appearing in literature
and review their advantages and disadvantages.

2.4.1.1 Tuple and Object Timestamping

Tuple timestamping is usually applied in temporal relational data models supporting only INF
relations. Data models applying tuple timestamping add timestamps to each tuple in a relation. In
case of historical data, each tuple is stamped with a validity time period, denoting when the tuple
as a whole was valid in the real world. In a rollback database, tuples are stamped with transaction-
time periods. Tuples in a bitemporal database are stamped with both valid- and transaction-time
periods. Timestampingis usually achieved using the extension approach introduced in section 1.3.2,
where special time attributes are added to a non-temporal schema. Temporal data models applying
tuple timestamping are proposed, for example, in [JMS79, Cli82, CW83, Ari86, LJ88, NASS,
Sar90a, SRH90, Lor93].

The main disadvantage of tuple timestamping is the fact that information about a real world
entity 1s spread over several tuples where each tuple represents a state the real world entity was
in during a certain time period. [GV85, Gad&8] called this the vertical temporal anomaly. Addi-
tionally, tuple timestamping introduces data redundancy. If, for example, a tuple containing data
on an employee is modified by changing the salary, all other information in the tuple, such as the
name, the employment number and the department the employee is working in, has to be repeated.

Example 2.2 We use tuple timestamping to express that Moira has worked in the department of
wnformation systems since 1994, having an employment number 100. In 1994, she earned 15000,
and got a salary raise in 1996 to 20000. This information is stored wn two tuples, one valid from
1994 to 1996, the other one valid since 1996. The term until changed denoles that il is nol yet
known when the validity time period of the tuple finishes.

< 100, Moira, 15000, IS > from 1994 until 1996
< 100, Moira, 20000, IS > from 1996 until changed

24 CHAPTER 2. KEY CONCEPTS

The notion of object timestamping appeared with the proposals of temporal object data models.
Object timestamping in most proposed temporal object data models, however, is akin to tuple
timestamping. The object state is stored in a record containing atomic or complex fields (or
attributes). This data structure can be viewed as a tuple. So the data structure storing an object
state corresponds to a tuple in NFNF. Temporal data models applying object timestamping are
proposed, for example, in [BM88, EW90, KGBW90, SC91, Wuu91, KS92b].

2.4.1.2 Attribute Timestamping

Attribute timestamping overcomes the disadvantage of data redundancy introduced when applying
tuple timestamping. Attribute timestamping adds timestamps to each attribute value. Values in
a tuple which are not affected by a modification do not have to be repeated. So, the history of
values is stored separately for each attribute.

Using the schema extension approach, attribute timestamping demands that the underlying
data model supports NFNF relations or complex objects, since all timestamped attributes are of
a complex type, storing the attribute value together with its timestamp.

Temporal relational data models applying attribute timestamping are described in [CT85,
GV85, Tan86, CC87, Gad88, GY88, TAOR9, T(G89] and proposals of temporal object data models
in [CS88, EW90, RS91, Sci9l, CG92, EWK93a, GO93].

Example 2.3 Using attribute timestamping, we can store the wnformation given in example 2.2
mn a single tuple:

< {1100 from 1994 until changed|},
{|Moira from 1994 until changed|},
{115000 from 1994 until 1996|, |20000 from 1996 until changed|},
{IIS from 1994 until changed|} >

The tuple contains the history of each attribute. An attribute history is a set of value-timestamp
pairs.

2.4.2 How is it Timestamped ?

We have seen that temporal data models can be distinguished by whether they apply tuple or
attribute timestamping. Using the schema extension approach, the choice of what to timestamp
is restricted by the underlying data model.

The same holds if we look at how data is timestamped. Typically, data may be timestamped
either with a time instant, a time interval or a temporal element. Temporal relational data models
staying within INF are restricted to use timestamps which can be mapped to additional scalar
attribute values of a tuple. Data models supporting NFNF relations or objects permit complex
attribute values, allowing timestamps of higher complexity to be used.

The following three sections discuss the different usage of timestamps and how they can be
implemented using the schema extension approach. Time intervals are assumed to be closed at the
lower and open at the upper bound.

2.4.2.1 Timestamping with Time Instants

Data timestamped with a time instant is usually assumed to be valid only at the specified instant.
Relations containing data timestamped with time instant are called event tables [Sno95b]. Tuple
timestamping with time instants can be modeled by extending the schema with an (implicit)
attribute of type date. The relation stays within first normal form.

Example 2.4 The non-temporal table Employees introduced in section 1.1.2 is turned into an
event table using tuple timestamping with time instants:

2.4. TIMESTAMPING DATA 25

EmpID Name | Salary | Dept At
100 Moira 15000 IS 1994
101 Adrian 9000 IS 1996
102 Alain 9000 IS 1995
103 Antonia 11000 IS 1996
104 Gabrio 10000 IS 1996
105 Andreas 9000 IS 1993

FBuvent tables timestamp data with the time instant the corresponding event took place. The schema
1s extended, for example, with an additional attribute At of type date. The event table Employees
contains the dates when people were hired, their name, employment number and initial salary.

NFNF relations allow information to be timestamped on the attribute level. Attribute time-
stamping with time instants can be implemented accordingly. Each attribute is turned into a
(complex) attribute with the initial type extended with an attribute At of type date.

Temporal data models stamping data with time instants are proposed in [CW83, Ari86]. Object
data models are described in [BM88, CS88, Scid4].

2.4.2.2 Timestamping with Time Intervals

As seen before, the timestamp associated with a tuple identifies, for example, when the combination
of values in the tuple was valid. Using the schema extension approach, timestamping with time
intervals can be applied to 1NF relations. The lower and the upper bound of the time interval
are mapped to two additional attributes of type date. Bitemporal tables are extended with four
attributes, two to capture valid time and two for transaction time.

Tuple timestamping with time intervals introduces redundancy. As mentioned before, updating
values in a tuple leads to a new tuple in the relation, where all attribute values not concerned by
the modification are repeated. Additionally, a tuple which is valid during several non-overlapping
time periods is stored separately for each time period, spreading the history of a real world object
over several tuples. Since time intervals are not closed under the set-theoretic operations intersect,
difference and union, a similar effect can occur when calculating a query result.

Example 2.5 Tuble Employees is extended applying tuple timestamping. Two additional at-
tributes From and To, which, for example, store the starting and ending time instant of a valid-time
winterval, are added:

EmpID | Name | Salary | Dept || From To
100 Moira 15000 IS 1994 1996
100 Moira 20000 IS 1996 0
101 Adrian 9000 IS 1996 0
102 Alain 9000 IS 1995 0
103 Antonia 11000 IS 1996 o0
104 Gabrio 10000 IS 1996 0
105 Andreas 9000 IS 1993 o0
106 Martin 9000 IS 1989 1996
107 Tom 4500 Math 1985 1991
107 Tom 4500 Math 1993 1995

Time wntervals are assumed to be closed at the lower and open at the upper bound, and oo is used to
represent the special value until changed. Nole that besides the tuples seen in the non-temporal
version of this table, it is now possible to store data about employees who are no longer working
i the unwersity. Martin, for example, left the unwersity in 1996. Due to Moira’s salary raise
1996, she s listed twice in the table. Tom also appears twice, since he was employed during
non-overlapping time periods.

26 CHAPTER 2. KEY CONCEPTS

Applying attribute timestamping, each attribute in a relation is extended to a (complex) at-
tribute by adding two or four additional attributes. Sets of such complex attributes contain the
history of each attribute in a tuple. Redundancy is introduced if the same value appears several
times during non-overlapping time periods for an attribute in a tuple. For example, since Tom
was employed during non-overlapping time periods, the corresponding attribute values have to be
repeated for each time interval.

Proposals for temporal data models using time intervals for timestamping can be found in

[Tan86, Sno87, LJ88, NA8Y, TAO89, Sar90a, Wuu9l, KS92b, Lor93, Tan93, BFG96].

Example 2.6 Tuble Employees is extended using attribute timestamping with time intervals. Two
additional attributes From and To are added to each attribute. Moira’s salary raise in 1996 does
not introduce redundancy anymore.

EmpID Name Salary Dept

{<100, 1994, co>1}
{<101, 1996, co>}

{<107, 1985, 1991>,
<107, 1993, 1995>}

{<Moira, 1994, co>}
{<Adrian,1996, co>}

{<Tom, 1985, 1991>,
<Tom, 1993, 1995>}

{< 15000, 1994, 1996>,
<20000, 1996, co>}
{<9000, 1996, co>}

{<4500, 1985, 1991>,
<4500, 1993, 1995>}

{<IS, 1994, co>}
{<I8, 1996, co>}

{<I8, 1985, 1991>,
<I8, 1993, 1995>}

2.4.2.3 Timestamping with Temporal Elements

Timestamping data with temporal elements allows modeling the fact that data was valid during
several non-overlapping time periods. Additionally, it has the advantage that temporal elements
are closed under the set theoretic operations intersect, difference and union, as seen in section 2.1.4.
Extending the data structures of a non-temporal data model to support data timestamped with
temporal elements may only be done if the data model used supports non-atomic attribute values.
Temporal models using temporal elements to timestamp data are introduced, for example, in

[GV85, Gad88, GY88, TG89, EW90, GN93).

Example 2.7 Tuable Employees, extended with temporal elements using tuple timestamping with
valid time, looks the following way:

EmpID | Name | Salary | Dept | Validity

100 Moira 15000 IS {<1994, 1996>}

100 Moira 20000 IS {<1996, co>}

101 Adrian 9000 IS {<1996, co>}

102 Alain 9000 IS {<1995, co>}

103 Antonia | 11000 IS {<1996, co>}

104 Gabrio | 10000 IS {<1996, co>}

105 Andreas | 9000 IS {<1993, co>}

106 Martin 9000 IS {<1989, 1996>}

107 Tom 4500 | Math | {<1985, 1991>, <1993, 1995>}

Motra’s salary update still causes redundancy. Employee Tom now is only listed once, since it s
possible to store the different time periods of his employment in a temporal element.

To reduce the data redundancy, attribute timestamping with temporal elements can be applied.
Each attribute in the schema i1s extended with a temporal element.

Example 2.8 Tuble Employees s extended applying attribute timestamping with temporal ele-
ments:

2.5. TEMPORAL OPERATIONS

27

EmplID

Name

Salary

Dept

{<100, {<1994, co>}>}
{<101, {<1996, co>1}>}

{<107, {<1985, 1991>,

{<Moira, {<1994, co> >}
{<Adrian, {< 1996, co>}>}

{<Tom, {<1985, 19913,

{<15000, {<1994, 1996> >,
<20000, {<1996, co>}>}
{<9000, {<1996, co>}>}

{<4500, {<1985, 1991,

{<IS, {<1994, co>}>}
{<IS, {<1996, co>}>}

{<18S, {<1985, 1991>

<1993, 1995>1>} <1993, 1995>1>} <1993, 1995>1>} <1993, 1995>1>}

As already seen in example 2.6, attribute timestamping omits the data redundancy wntroduced by
updating Moira’s salary. Employee Tom is also only listed once. This approach of timestamping
data eliminates all redundancy.

Attribute timestamping with temporal elements does not introduce redundancy anymore. It
leads, however, to rather unreadable relations and it is more difficult to write queries dealing with
the different time periods.

2.5 Temporal Operations

As shown in chapter 1, extending the data structures of a non-temporal database schema to
support temporal data is not enough. The data model also has to support operations which allow
the temporal data to be queried and updated with respect to time.

Different approaches have been taken to give support for temporal reasoning and querying
[MS91, Cho94, Sno95b]. For example, the operational part of some temporal data models con-
tains special operations to do temporal selections or temporal joins. Other approaches propose a
temporal algebra.

The following subsections describe three important notions concerning the operational part of
temporal data models. These notions hold not only in the context of temporal relational data
models in which they were introduced, but also for other data models.

2.5.1 Vertical Temporal Anomaly and Coalescing

As mentioned before, the history of a real world entity is spread over several tuples if tuple times-
tamping is applied. Each tuple contains a state the real world entity once was in, together with
the time information when this state was valid (or recorded). [GV85, Gad88] called this forced
splitting of a logical unit of information into more than one tuple vertical temporal anomaly.

Temporal data models using tuple timestamping thus represent temporal data inappropriately.
A user wants to view all data about an employee as a unit, for example, in a single tuple. As we
have seen, the vertical temporal anomaly cannot be omitted in INF temporal data models. The
consequence is that the overall time a real world entity plays a specific role, for example, when the
entity is an employee, is split up in several smaller time periods, due to the changes in attribute
values. Often, however, it is of interest during which time period or how long an employee was
working in a company. In order to calculate maximal time intervals for such tuples, a special
operation — coalescing — was proposed [NA93, Sar93, Boh94, Sno95b, SBJS96b].

The idea to calculate the overall time period a real world entity played a specific role, for
example, when he was an employee, is the following: Attributes containing time-varying values
must first be projected away' since they cause the temporal data about the entity to be split up
into several tuples. This leads to value-equivalent tuples. Value-equivalent tuples are tuples having
identical non-timestamp attribute values. The next step is to calculate the overall time period for
each set of value-equivalent tuples having overlapping or consecutive valid-time periods. This is
done using the coalescing operations. So, a table is said to be coalesced if it does not contain two or
more value-equivalent tuples with overlapping or consecutive valid-time periods. Some proposals
of temporal data models assume implicitly coalesced table, others support an explicit coalescing
operation.

IProjecting away an attribute means that a new relation without that attribute is calculated using the projection
operation

28 CHAPTER 2. KEY CONCEPTS

Example 2.9 Assume we want to find the overall time period employees were working for a com-
pany. We use table Employees shown in example 2.5. First, we have to project away all teme-
varying attributes. The employment number and the name of the employee shall be time invariant.
This step results in the following table:

EmpID Name From To
100 Moira 1994 1996
100 Moira 1996 o0
101 Adrian 1996 o0
102 Alain 1995 o0
103 Antonia 1996 o0
104 Gabrio 1996 o0
105 Andreas 1993 o0
106 Martin 1989 1996
107 Tom 1985 1991
107 Tom 1993 1995

The table shown above contains two sets of value-equivalent tuples. We see that the two tuples
containing data on employee Moira have identical non-timestamp attribute values. The same holds
for the two tuples containing data about employee Tom. Since the time periods of the former
are overlapping, a mazimal time period can be calculated, whereas the time periods of the latter
are disjoint. To find the maximal employment time periods for each employee, the above table is
coalesced which leads to

EmpID Name From To
100 Moira 1994 o0
101 Adrian 1996 o0
102 Alain 1995 o0
103 Antonia 1996 o0
104 Gabrio 1996 o0
105 Andreas 1993 o0
106 Martin 1989 1996
107 Tom 1985 1991
107 Tom 1993 1995

There is a major problem in using this operation, however. For a user, it might not be clear
which of the attributes are time-varying and which are time-invariant. In fact, this might even
change during the life time of a temporal database. This means, that for a specific query, it is not
straightforward to know which attributes have to be projected away for the desired result.

For example, using the table given in example 2.5, two scenarios are possible. First, assume
a user wants to find the maximal time periods employees were working for a specific department.
Looking at the relation instance given, he assumes attributes EmpID and Name to be time invariant.
So, he removes attribute Salary from the relation using the projection operation and coalesces the
resulting table. Second, assume the user wants to find the maximal time periods employees were
working for the university. This means that prior to coalescing, he additionally has to get rid of
attribute Dept.

Thus, in order to write the correct queries, the user must look at the table to find out which
attributes are time-varying. This i1s not satisfactory. Additionally, being forced to do a projection
operation prior to finding out during which time period an entity had a certain role, is neither
natural nor straightforward. Chapter 5 will show that the concept of temporal object role modeling
eliminates these deficiencies.

2.5. TEMPORAL OPERATIONS 29

2.5.2 Snapshot Reducibility

When enhancing a non-temporal algebra to a temporal algebra, the question 1s what the semantics
of the temporal operations should be. The same, of course, holds when defining a temporal query
language. [Sno87, BJS95] propose a reduction proof to specify the semantics of temporal queries. It
relates the databases and queries of a temporal data model MY = (DST| QL) with a non-temporal
data model M = (DS, QL), where temporal relations and queries are instances in DS and QLT
respectively, and non-temporal relations and queries are instances in DS and QL. In the following,
the focus is on historical (valid-time) databases. The notion of snapshot reducibility, however, can
be used also with respect to rollback or bitemporal databases.

The reduction proof given in [Sno87, BJS95] states that the snapshot at time instant t of the
result of a valid-time query q” in QLY, executed on a valid-time database db”, must be equal to the
result of the corresponding non-temporal query q in QL, executed on the snapshot of the valid-time
database at time instant t, TtMU’M(db"),

The valid-time slice operation T takes a valid-time database db¥ of data model MY and returns
the state of db¥ at a time instant t, preserving value-equivalent tuples as duplicates. The resulting
snapshot of a valid-time database, db = TtMU’M(db") of data model M, is the state the database was
in at the specified time instant, without the valid time.

where valid-time database db? is an instance in DSY.

Example 2.10 Assume a valid-time database db? consisting of a single valid-time table Employees
as given in example 2.5, and assume that this database s specified using a valid-time relational
data model RMY.

The snapshot of this historical database, taken at January 1, 1994,

RMYRM

TJanuary1,1994(dbv)7

returns a non-temporal relational database db defined in the non-temporal relational data model
RM, which consists of the following snapshot relation Employees:

EmpID | Name | Salary | Dept
100 Moira 15000 IS
105 Andreas 9000 IS
106 Martin 9000 IS
107 Tom 4500 Math

With respect to the relational model, the time-slice operation 7 returns non-temporal relations
containing the tuples which were valid at a specific time point. The notion of snapshot reducibility
can now be defined using the valid-time slice operation.

Definition 2.1 (Snapshot Reducibility) [BJS95] Let M = (DS, QL) be a non-temporal rela-
tional data model, and let MV = (DSY, QLY) be a valid-time relational data model. Also, let db? be
a database wnstance in DSY. A wvalid-time query q” in QLY is snapshot reducible with respect to a
non-temporal query q in QL if and only if

vab e - M (g7 (abY)) = g(ri M (dbY))

Snapshot reducibility implies that for all valid-time databases db” and for all time instants t,
the commutativity diagram depicted in figure 2.5 must hold [BJS95].

Snapshot reducibility has been used to define the semantics of queries in [Sno87, Boh94, BJS95].
Their definitions are not as general as possible, though. First, they explicitly refer to a non-
temporal relational data model and second, they do not specify exactly what the query language
covers. [Sno87] mentions that snapshot reducibility can also be used to define the semantics of
modification statements.

In section 1.3.1, a data model M was specified as consisting of three parts — the data structures
DS, operations OP and integrity constraints C. The operations do not only cover queries for data

30 CHAPTER 2. KEY CONCEPTS

db® q" (db?)

timeslice at ¢ timeslice at ¢

R OM by (M (b)) = M (g ()
q

Figure 2.5: Snapshot reducibility of query q” with respect to query q at time instant ¢

retrieval, but also modification statements. Additionally, constraints are specified as an explicit

part of a data model. In this thesis, a more general (or clearer) definition of snapshot reducibility
will be used which is defined as:

Definition 2.2 (General Version of Snapshot Reducibility) Let M = (DS, 0P, C) be a non-
temporal data model, and let M = (DST, 0PT, ¢T) be a temporal data model. Also, let db” be a
database instance in DST. A temporal operation op” in OPT is snapshot reducible with respect to
a non-temporal operation op in OP if and only if

Vab™ve : 7 M (opT(dbh)) = op(rM M (dbT))

A temporal constraint cT in ¢T is snapshot reducible with respect to a non-temporal constraint c
wmn C if and only if

T T
vabTye - MM (T (abT)) = (7 M (abT))
where ¢T (dbT) and c(db) denote the evaluation of the constraints over a database.

Definition 2.2 does not make any assumption on the underlying non-temporal data model and
specifies clearly that not only temporal queries but also temporal modification operations and
temporal constraints are defined using snapshot reducibility. Additionally, it 1s not restricted to
valid-time data models. The semantics of operations on transaction time may also be defined
using the notion of snapshot reducibility. The temporal data model TOM is based on this general
definition of snapshot reducibility.

2.5.3 Temporal Completeness

[BM94, Boh94] introduced the notion of temporal semi-completeness and temporal completeness
for query languages. In [BJS95], slightly changed versions of these definitions are proposed, adding
syntactical requirements for temporal query languages to these definitions.

Temporal semi-completeness essentially states that a temporal data model must contain tem-
poral generalisations of all non-temporal queries and non-temporal instances of data structures.
Temporally generalised queries must be syntactically similar to the snapshot queries they gener-
alise. Temporal completeness adds further functionality and syntactical requirements to temporal
semi-completeness, such as temporal comparison operators and the possibility to override snapshot
reducible semantics of queries with non-temporal semantics. In the following, the definitions given
in [BJS95] are discussed, since these definitions seem to replace earlier ones.

Definition 2.3 (Temporal Semi-Completeness) [BJS95] Let M = (DS, QL) be a non-
temporal data model, and let MY = (DSY, QLY) be a walid-time data model. Data model MV is
temporally semi-complete with respect to model M if and only if all three of the following conditions

hold:

2.5. TEMPORAL OPERATIONS 31

1. For every relation r in DS, there exists a valid-time relation r¥ in DSY and a time instant t
MMy
such thatr =7, " ().
2. For every query q in QL, there exists a query q° in QLY that is snapshot reducible with respect
to q.

3. There exist two (possibly empty) text strings Sy and Ss such that for all pairs (q, @) of
queries, where q°
to query S1 q Ss.

1s snapshot reducible with respect to q, query q° s syntactically identical

The first condition in definition 2.3 states that all relation instances in the non-temporal data
model can be produced by taking a snapshot of a temporal relation instance. The consequence
of this is that if the non-temporal data model M supports duplicates, duplicates must also be
supported in the temporal model MV. Temporal data models assuming that relations are implicitly
coalesced hence are not temporally complete, since duplicates are eliminated in coalesced tables.

The second condition demands that each non-temporal query q expressible in data model M
must have a temporal counterpart q¥ in data model M”. Hence, if data model M supports negation,
then data model MV must also support it for temporal queries. This accounts for the fact that
most temporal data models proposed do not support temporal negation, for example, in form of a
temporal set difference.

The last condition specifies a syntactical condition for the query language of temporal data
models. The idea is that a non-temporal query and its temporal counterpart shall be syntactically
stmalar. So the syntax of a legal non-temporal query may only be extended by adding keywords in
front of or after it. The same two strings S; and S must apply to all pairs (q, q¥). This condition
allows an easy migration of non-temporal queries to temporal queries since non-temporal queries
can be reused for the definition of their temporal counterparts.

Temporal semi-completeness covers only those queries in the temporal data model which are
snapshot reducible to a non-temporal query in the non-temporal data model. A temporal data
model should provide for other forms of temporal queries, however. For example, it should support
queries using temporal comparison predicates as introduced in section 2.1.5. These aspects are
covered in the definition of temporal completeness.

Definition 2.4 (Temporal Completeness) [BJS95] A valid-time data model MV = (DSY, QLY)
1s temporally complete with respect to a non-temporal data model M = (DS, QL) ¢f and only of all
five of the following conditions hold:

1. WY is temporally semi-complete with respect to M.

2. For every snapshot reducible query q* wn QLY, it is possible to override snapshot reducibility,
either by dropping the syntactic extensions that enforce snapshot reducibility or by modifying
qY syntactically to Sy q Sa, where Sy and Ss are (possibly empty) text strings that depend
on QLY but not on q". Querriding snapshot reducibility means to evaluate a query without
winterpreting valid times.

3. The name of a valid-time relation within a statement can be syntactically substituted (perhaps
with other syntactic modifications and additions, such as parentheses) with a query q¥ in QLY
that defines the respective valid-time relation without changing the semantics of the statement.
The syntactic modifications must depend on QLY only, not on q".

4. Allen’s temporal comparison predicates [AU83] can be used between (a) temporal attributes of
stored valid-time tables (for example, valid-time attributes and explicit temporal attributes),
(b) implicitly computed valid times associated with temporally semi-complete (sub-)queries,
and (c) temporal constants.

5. It is possible to retrieve and constrain (a) mazimal continuous valid-time periods and (b)
valid times as specified by the user.

32 CHAPTER 2. KEY CONCEPTS

A temporally complete language must be temporally semi-complete. It must be possible to
override snapshot reducible semantics in a query and treat the elements of a database as uninter-
preted objects. This is, for example, necessary to compare the objects temporally with each other.
Additionally, it must be possible to substitute a temporal relation within a temporal query by an-
other temporal query. The temporal comparison predicates defined in [All83] (or an equivalent set)
have to be supported. Finally, the data model has to support maximal continuous time periods,
for example, by providing a coalescing operation, and it must be possible to retrieve and constrain
valid times as specified by the user.

Temporal completeness provides requirements for temporal data models, specified with respect
to a non-temporal reference model. This supports what was called the generalisation approach
in section 1.3.2.2. However, as already mentioned there, temporal completeness only refers to a
query language and does not explicitly include constraints. It is obvious that these definitions were
made with respect to the relational data model and the query language SQL. Additionally, the
mixture of syntax and semantics in these definitions seems to be unnatural. These definitions were
customised for a specific language rather than intended to be general requirements.

Interpreted in a general way, these definitions supply nevertheless valuable requirements appli-
cable also, for example, to temporal object data models.

2.6 Summary

This chapter has introduced important concepts appearing in several places in literature on tem-
poral database research. On one hand, these concepts are used in several temporal data models,
for example, the notions of valid time and transaction time and the way data is timestamped.
On the other hand, this chapter also has introduced ideas which have not yet been widely used,
but in our opinion are essential for temporal data models, for example, snapshot reducibility and
temporal completeness.

In chapter 1, it was stated that the goal of this thesis is to come up with a general, generic and
orthogonal temporal data model. In order to achieve this, some of the concepts introduced in this
chapter will be used, because they support the ideas of a generalised temporal data model. Other
concepts introduced in this chapter, however, will be questioned.

As a summary, a wish list for a temporal data model will now shortly be discussed with respect
to the concepts introduced in this chapter. This chapter has shown how time can be modeled
and the proposed notions of time. Additionally, an overview of the different ways to timestamp
data was given, and what kind of timestamps have been used in the literature. With respect to
the functionality of a temporal data model, the important notions of snapshot reducibility and
temporal completeness and the coalescing operation were discussed.

In this thesis, the vision of a temporal data model is based on the idea that a data model
consists of data structures, operations and integrity constraints. A general temporal data model
should include the general concepts already proposed — for example, snapshot reducibility and
temporal completeness.

On the other hand, many weaknesses found in other proposals should be eliminated. One source
of restrictions is the fact that data structures are extended instead of generalised. This means,
that considering only tuple and attribute timestamping using schema extension is too restrictive.
First, it does not allow for a generic data model, since assumptions on special attributes in the
schema or type are made and temporal algebra operations are based on these special attributes.
Second, the problem of the vertical temporal anomaly was mentioned. One solution is a special
coalescing operation, necessary to calculate the overall time period a real world entity played a
role. The use of this operation is not straightforward. In general, a logical unit of information
should be prevented from being spread over several objects of the temporal data model used. The
history of an entity should be stored within a single object of the model. Third, tuple and attribute
timestamping are used to timestamp real world entities. Timestamping other constructs such as
sets of entities (in the form of relations or collections of objects), constraints or even databases as
a whole were never discussed in temporal database research.

2.6. SUMMARY 33

Another restriction is that most proposals focus on temporal query languages. It is not clear,
however, what they consider the query language to be. Are modification operations included when
not explicitly stated 7 And what about constraints? The requirements for a general, generic and
orthogonal temporal data model thus are the following:

A temporal data model should support

1.
2.

5.
6.

valid time and/or transaction time, possibly other time lines

temporal data structures which do not make any assumptions about a specific type system
or the presence of specific time attributes

temporal data structures which allow the timestamping of all constructs supported by the
model in an orthogonal way

temporal data structures which overcome the vertical temporal anomaly
a temporally complete query language or algebra with snapshot reducible semantics

temporal constraints with snapshot reducible semantics

Additionally, it would be preferable to have a semantically rich temporal data model supporting,
for example, temporal associations and the conceptual modeling of temporal databases without
having to map the conceptual model to a data model supported by a DBMS.

34

CHAPTER 2. KEY CONCEPTS

Chapter 3

Temporal Data Models

Having discussed the general concepts used for temporal databases in the previous chapter, this
chapter now gives an overview of proposed temporal data models. The data models are on one hand
classified according to the underlying data model, and on the other hand, according to the kind of
timestamping they use. Interestingly, most of the models use the schema extension approach.

Additionally, proposals of abstract data types for time and a functional data model which is
extended to handle time-varying data will be discussed.

3.1 Temporal Relational Data Models

First, temporal relational data models proposed in the literature are introduced. Since most of
the work in the research area of temporal databases has been done with respect to the relational
data model, numerous proposals can be found (with only few implementations). This section looks
at the most important ones with respect to the work presented in this thesis. As discussed in
the previous chapter, data may be timestamped using tuple or attribute timestamping. Temporal
relational data models using tuple timestamping are introduced first. Then, NFNF relational data
models using attribute timestamping are discussed. A temporal relational data model using a
combination of both tuple and attribute timestamping concludes this section.

3.1.1 Tuple Timestamping

Many proposals can be found extending the relational model supporting INF relations for time-
varying data. In the following, the relevant proposals are classified with respect to what kind of
timestamp is used. As already mentioned, temporal data models applying tuple timestamping
suffer from the vertical temporal anomaly. Different solutions which address this issue in one way
or another will also be discussed. Additionally, models assuming implicitly coalesced relations will
be identified. As stated before, these models are not temporally complete since they do not support
duplicates.

3.1.1.1 Timestamp is a Time Instant

In the Historical Data Model (HDM) [Cli82, CW83], a historical database consists of a collection
of historical relations over the same set of states. A historical relation is viewed as a sequence of
relation instances, indexed by valid time, each one representing a different state of the historical
relation. A historical relation thus is a three dimensional object — the two dimensions attributes
and tuples plus a time dimension. This is called the cubic view of a historical relation. Each plane
on the time dimension is a static relation instance.

All tuples are assumed to appear in all states of the relation. Such completed relations contain
a tuple in each state for every entity that appears in a relation at any state of the database history.

35

36 CHAPTER 3. TEMPORAL DATA MODELS

In case a tuple does not exist in a state, it contains null values in all attributes not belonging to
the primary key of the relation.

An attribute STATE containing time instants and a boolean-valued attribute EXISTS are added
to each relation. These attributes are an intrinsic part of their temporal data model. STATE denotes
the relation state the tuple belongs to. The EXISTS attribute is used to specify whether the tuple
exists in this relation state or not. A non-temporal key is extended by the attribute STATE.

Example 3.1 Assume attribute EmpID to be the key of the non-temporal relation Employees. The
historical relation given in example 2.5, modeled using HDM, then has a key {EmpID, STATE}.
Each tuple valid at a time instant is repeated wn all relation states. The values 1 or 0 denote
whether the tuple exists in a state or not. Value L represents the null value.

EmpID | Name | Salary | Dept || STATE | EXISTS?
100 1 1 1 1985 0
101 1 1 1 1985 0
102 1 1 1 1985 0
103 1 1 1 1985 0
104 1 1 1 1985 0
105 1 1 1 1985 0
106 1 1 1 1985 0
107 Tom 4500 Math 1985 1
100 1 1 1 1989 0
101 1 1989 0
102 1 1 1 1989 0
103 1 1 1 1989 0
104 1 1 1 1989 0
105 1 1 1 1989 0
106 Martin 9000 IS 1989 1
107 Tom 4500 Math 1989 1
100 1 1 1 1991 0
101 1 1 1 1991 0
102 1 1 1 1991 0
103 1 1 1 1991 0
104 1 1 1 1991 0
105 1 1 1 1991 0
106 Martin 9000 IS 1991 1
107 1 1 1 1991 0
100 1 1 1 1993 0
101 1 1 1 1993 0
102 1 1 1 1993 0
103 1 1 1 1993 0
104 1 1 1 1993 0
105 Andreas 9000 IS 1993 1
106 Martin 9000 IS 1993 1
107 Tom 4500 Math 1993 1
100 Moira 15000 IS 1994 1
101 1 1 1 1994 0
102 1 1 1 1994 0
103 1 1 1 1994 0
104 1 1 1 1994 0
105 Andreas 9000 IS 1994 1
106 Martin 9000 IS 1994 1
107 Tom 4500 Math 1994 1

Since completed relations contain a tuple for each entity and state, regardless if the entity
existed in that state, a historical relation in HDM is highly redundant. [CW83] mention that the

3.1. TEMPORAL RELATIONAL DATA MODELS 37

picture of each historical relation as a cube is an idealisation and a direct implementation highly
redundant. However, they do not provide better ideas for its implementation.

The temporally oriented data model (TODM) proposed by [Ari86] tries to overcome this defi-
ciency. A data cube, also consisting of the three dimensions attributes, tuples and time, supports
an explicit and inherent order of the tuples contained in it. This preserves the temporal context
of the data and the identity of the tuples. The ordering of objects over time and interpolation are
necessary to know how long a state prevailed or what the state was at any time.

3.1.1.2 Timestamp is a Time Interval

[JMS79] timestamp tuples in their data model LEGOL 2.0 with two implicit time attributes Start
and Stop. These two additional attributes correspond to the starting and ending point of the time
period an entity exists in the real world. Start and Stop actually represent a closed valid-time
interval [Start <Stop].

Example 3.2 The historical relation of example 2.5 would be modeled in LEGOL in the following
way:

EmpID Name | Salary | Dept || Start | Stop
100 Moira 15000 IS 1994 1995
100 Moira 20000 IS 1996 0
101 Adrian 9000 IS 1996 0
102 Alain 9000 IS 1995 0
103 Antonia 11000 IS 1996 o0
104 Gabrio 10000 IS 1996 0
105 Andreas 9000 IS 1993 o0
106 Martin 9000 IS 1989 1995
107 Tom 4500 Math 1985 1990
107 Tom 4500 Math 1993 1994

[NA8S, NA89, NA93] introduce the Temporal Relational Model (TRM). Similar to the LEGOL
approach, every time-varying relational schema in TRM has two mandatory timestamp attributes —
time-start (Ts) and time-end (Tg) — which represent a closed valid-time interval [Ts <Tg]. A
valid-time relation contains a time-invariant key and time-varying attributes. They distinguish be-
tween synchronous and asynchronous time-varying attributes. Synchronous attributes in a relation
change their values always at the same time, whereas asynchronous attributes change their values
independently from the other attributes in the relation. For example, attributes Salary and Dept
in the example relation Employees do not necessarily change their values at the same time for a
particular employee.

An attribute 1s not allowed to have multiple values at a particular instant of time. This means
that a relation in TRM is always coalesced. Every time-varying relation schema has two candidate
keys — the time-invariant key plus either Tg or Tg.

As already seen, the fragmentation of an entity over several tuples causes incomplete informa-
tion about the lifespan of attributes to be stored in a tuple. The tuples in a relation are semantically
dependent. This causes update and retrieval anomalies. To overcome these problems, due to the
asynchronous variations of attribute values within a tuple over time, they proposed a time normal
form (TNF). Time normalisation ensures that the lifespans of a tuple and its attribute values
are the same, or, in other words, that all attributes in a relation change synchronously. This is
achieved by decomposing relations into sub-relations where all time-varying attributes change their
values stmultancously. However, in the case that synchronous attributes are not available, TNF
degenerates to tuple timestamping over relations containing, for example, a key attribute which is
invariant over time, plus a time-varying attribute and a timestamp. The TNF addresses problems
similar to the vertical temporal anomaly, as the next example shows.

Example 3.3 The following relation Employees is not in TNF, since attributes Salary and Dept
are asynchronous:

38 CHAPTER 3. TEMPORAL DATA MODELS

EmpID | Name | Salary | Dept Ts Ty
108 John 8000 IS 1990 | 1993
108 John 8000 Math 1994 | 1995
108 John 9000 Math || 1996 | now

We assume attributes EmpID and Name to be time wnvariant. The relation needs to be decomposed
wn two relations Salary and Employees which are in TNF:

EmpID | Name | Salary Ts Tg
108 John 8000 1990 | 1995
108 John 9000 1996 | now

EmpID | Dept Ts Tg
108 IS 1990 | 1993
108 Math 1994 | now

The time information, for example, the salary time periods, are not fragmented anymore. The
vertical temporal anomaly, however, is not removed since data about real world entity John s still
spread over several tuples.

3.1.1.3 Timestamp is a Time Instant or a Time Interval

The Historical Data Model (HDM) described in [Sar90b, Sar93] supports historical relations. A
historical relation contains either tuples stamped with a time instant (event relation) or stamped
with a time interval (state relation). Entities are modeled as objects described by attributes. The
values of these attributes define the state of the object. A state prevails over an interval of time,
during which none of the attributes change their values.

In HDM, historical relations are mapped to relations having wisible attributes — attributes
of a corresponding non-temporal relation — and automatically added timing attributes FROM and
TO, modeling a closed time interval [FROM - TO]. Conventional relations may be transformed into
historical relations by assuming a valid time [0 - NOW].

HDM only supports valid time. They view a temporal database as being updated in real
time, which means that valid time and transaction time are the same. All historical relations are
automatically coalesced.

For a corresponding historical DBMS (HDBMS), they propose that historical relations would
be created by listing the visible attributes and specifying a granularity for the timestamps used
for the relations. A hierarchy of different granularities would be provided by the system. HDBMS
separates each historical relation in two union compatible relations, one containing the currently
valid tuples, the other one the history of the tuples. Future states cannot be recorded in this
model. The separation of current and historical tuples is transparent to the user and allows faster
access to the current data.

Example 3.4 Relation Employees, given in example 2.5, would be created using the following
SQL statement:

CREATE STATE TABLE Employees (EmpID INTEGER,
Name CHAR(10),
Salary INTEGER,
Dept CHAR(10))
WITH TIME GRANULARITY Date

This historical relation then is separated into the segment CURRENT Employees

3.1. TEMPORAL RELATIONAL DATA MODELS 39

EmpID | Name | Salary | Dept || FROM | TO
100 Moira 20000 IS 1996 now
101 Adrian 9000 IS 1996 now
102 Alain 9000 IS 1995 now
103 Antonia 11000 IS 1996 now
104 Gabrio 10000 IS 1996 now
105 Andreas 9000 IS 1993 now

and the segment HISTORY Employees

EmpID | Name | Salary | Dept || FROM | TO
100 Moira 15000 IS 1994 1996
106 Martin 9000 IS 1989 1996
107 Tom 4500 Math 1985 1991
107 Tom 4500 Math 1993 1995

Another temporal data model supporting both time instant and state timestamps is proposed
in [Sno84, Sno87, Sno93]. They present a temporal query language TQuel which is based on Quel
[HSW75]. Their temporal data model supports event and bitemporal relations where tuples are
timestamped with either time instants or time intervals. A time instant is mapped to a single
attribute, and valid- and transaction-time intervals to pairs of attributes. Temporal relations are
always in a coalesced state, and temporal operations always return coalesced results. TQuel also
supports a temporal data type to support user-defined time. [Sno87] states that since the additional
temporal attributes are an artifact of embedding a temporal relation in a snapshot one, the users
must be constrained in how they use these attributes. This is a general problem when using the
schema extension approach. Their main focus, though, is on the specification and semantics of a
temporal query language.

Example 3.5 The table of example 2.5 can be modeled in TQuel as a bitemporal relation. At-
tributes From and To denote the valid-time interval, Start and Stop the transaction-time interval.

EmpID | Name | Salary | Dept || From To Start | Stop
100 Moira 15000 IS 1994 1996 1995 1996
100 Moira 20000 IS 1996 0 1996 0
101 Adrian 9000 IS 1996 0 1997 0
107 Tom 4500 Math 1985 1991 1990 1993
107 Tom 4500 Math 1984 1993 1993 1995
107 Tom 4500 Math 1985 1991 1995 0

Transaction time denotes the time when tuples were inserted into or deleted from the database. The
first tuple was stored in the database in 1995 and deleted in 1996, when the salary was updated and
a new tuple had to be wnserted. The third tuple was inserted into the database in 1997. The fourth
tuple was corrected twice. First, it was stored that employee Tom was working for the first time at
the university from 1985 to 1991. This was believed to be true and thus stored in the database from
1990 untid 1993. From 1993 to 1995, it was believed that Tom worked for the university during
1984 to 1993. In 1995, it was set back to valid-time interval [1985 <1991).

3.1.1.4 Timestamp is a Temporal Element

[Sno95b] propose a conceptual data model, the Bitemporal Conceptual Data Model (BCDM). This
conceptual model is used as a basis for the definition of the temporal query language T'SQL2 and
allows for multiple representation data models.

TSQL2 supports user-defined, valid time and transaction time. Data is timestamped either
with sets of time instants or temporal elements. A relation in BCDM consists of a set of ordinary
tuples, consisting of explicit and implicit attributes. User-defined time is recorded as an explicit

40 CHAPTER 3. TEMPORAL DATA MODELS

attribute. Valid time and transaction time are recorded as implicit attribute values of a tuple,
specifying when the data represented by the tuple is true in the real world and stored in the
database, respectively. The implicit valid-time attribute has either a valid-time instant set or a
valid-time element as its value. Transaction-time attributes are recorded as temporal elements.
Tuples in bitemporal relations are timestamped with implicit attributes containing bitemporal
elements or bitemporal instant sets. Temporal relations in BCDM are inherently coalesced.

Example 3.6 [In example 3.5, Tom’s correction history with respect to the time period of his first
employment was described. This s depicted in figure 3.1. The shaded area covers those time
mnstants this specific fact about employee Tom was valid and stored in the database.

Valid Time

19934

19914

19854
1984+

1990 1993 1995 Transaction Time
Figure 3.1: A bitemporal element in BCDM

The timestamp of the bitemporal element shown in figure 3.1 is the following set of pairs (valid-
time, transaction-time) of bitemporal chronons, assuming a chronon to have the granularity of a
year:

{ (1985,1990), ..., (1991,1990),
(1985,1991), ..., (1991,1991),
(1985,1992), ..., (1991,1992),
(1984,1993), ..., (1993,1993),
(1984,1994), ..., (1993,1994),
(1985,1995), ..., (1991,1995),
(1985,1996), ..., (1991, 1996),

1

The BCDM 1is a unifying model in that it can be mapped to several existing bitemporal rep-
resentational data models. BCDM obviously is neither appropriate to present stored data to the
user nor to physically store data. [Sno95b] claim, however, that it is a most appropriate basis for
expressing time-varying data. They describe mappings to several representational data models, for
example, to the temporal data model described in [Sno87].

3.1.2 Attribute Timestamping

This section discusses various temporal data models based on attribute timestamping. Compared
to temporal data models using tuple timestamping, these models reduce the redundancy introduced
when storing time-varying data. These models also overcome the vertical temporal anomaly. We
have not found a proposal using time instants to timestamp attributes.

3.1.2.1 Timestamp is a Time Interval

The temporal data model presented in [CT85, Tan86] supports historical relations. A historical
relation may have four types of attributes: atomic attributes, triplet-valued attributes, set-valued

3.1. TEMPORAL RELATIONAL DATA MODELS 41

attributes and set-triplet-valued attributes. Atomic attributes contain atomic values such as inte-
gers, reals and character strings. Triplet-valued attributes consist of a valid-time interval [l <u),
closed at the lower and open at the upper bound, together with an atomic value, < [l Su), value >.
If the upper bound of the valid-time interval is now, a closed interval [l <now] is used. Set-valued
attributes are sets of atomic values, whereas set-triplet-valued attributes are sets of triplets.

These different types allow the modeling of non-time-varying or time-varying attributes which
are either atomic or set-valued. The histories of two attributes of the same tuple need not cover
exactly the same time period. The nesting depth of a historical relation is at most one — attribute
values can only be sets of atomic values or triplets. This allows the storage of entity histories, but
not of (hierarchical) relationships.

Time intervals of an attribute value history may or may not overlap. Allowing time-intervals to
overlap supports the modeling of the acquisition of new skills or the winning of prizes for persons.

Example 3.7 The relation given in example 2.5 can be modeled the following way: attributes
EmpID and Name shall be non-time-varying, atomic values, attribute Department a lime-varying,
atomic value whereas attribute Salary is a time-varying set-valued attribute.

EmpID | Name Salary Dept
100 Moira | {<[1994-1996), 15000>, <[1994-now], 15>
<[1996-now], 20000>}
101 Adrian | {<[1996-now], 9000>} <[1996-now], 15>
102 Alain {<[1995-now], 9000>} <[1995-now], 15>
107 Tom | {<[1985-1991), 4500>} | <[1985-1991), Math>
107 Tom | {<[1993-1995), 4500>} | <[1993-1995), Math>

3.1.2.2 Timestamp is a Temporal Element

The temporal data model described in [GV85, Gad86, Gad88, GN93] overcomes the vertical and
horizontal temporal anomalies they detected in temporal data models using tuple timestamping.
As described in chapter 1, vertical temporal anomaly denotes the fact that the history of a real
world entity is spread over several tuples. There is no way to omit this in temporal data models
staying within INF (and thus using tuple timestamping). Horizontal temporal anomaly refers to
the problem that attributes of the same relation change their values at different time instants.
For example, the salary of an employee does not necessarily change at the same time as the
employee changes from one department to another. One way to deal with this is by decomposing
a temporal relation into relations in time normal form (TNF) [NA88, NA89, NA93]. This need
of decomposition is called the horizontal temporal anomaly. The horizontal anomaly is usually
avoided by increasing the vertical anomaly.

The basic idea behind their model 1s to store the history of a real world entity in a single tuple.
In order to do that, they store the histories of each attribute separately using a non-first-normal-
form relational data model, timestamping attribute values with temporal elements.

Their basic temporal data model is homogeneous. Homogeneity relates the timestamps of
attributes within a tuple with each other. A tuple is called homogeneous if all timestamps of its
attributes values cover the same time period. A relation is called homogeneous if all of its tuples are
homogeneous. This requirement guarantees that a snapshot of a temporal relation will be a relation
without null values. This, however, is not always needed nor wanted. So, in [Gad86, GY88], several
ways are described to relax this requirement.

In contrast to the data model introduced in section 3.1.2.1, this model does not combine
temporal and non-temporal attributes within a tuple. The values of a key are required to be time
invariant. Since tuples are homogeneous, all timestamps of attributes cover the same time period.
Thus, the timestamp of a key represents the lifespan of the entity stored in the corresponding
tuple.

42 CHAPTER 3. TEMPORAL DATA MODELS

Example 3.8 The ezample relation Employees is a homogeneous relation. Attributes Salary and
Dept change their values asynchronously. Their value history is stored in a set-valued attribute.
So, the history of each employee can be stored in a single tuple.

Dept EmplID Name Salary
{<{[1994 — now]}, IS>} | {<{[1994 — now]}, 100>} | {<{[1994 — now]}, Moira>} | {<{[1994 — 1996)}, 156K>,
<{[1996 — now]}, 20K>}

{<{[1985 — 1991), {<{[1985 — 1991), {<{[1985 — 1991), {<{[1985 — 1991),
[1993 — 1995)}, Math>1} [1993 — 1995)}, 107>} [1993 — 1995)}, Tom>} [1993 — 1995)}, 4.5K>}

[TG89, Tan93] also extend a non-first-normal-form relational data model to support the han-
dling of historical data. They do not assume homogeneity in their model. Temporal sets of disjoint
time intervals are used to timestamp values. A temporal atom <t, v>, the fundamental construct
of their model, contains a temporal set t and a value v. The history of an attribute is represented
as a set of temporal atoms, where attribute values are either atomic values or relations whose tuple
components are made up again of temporal atoms.

In their model, the schema of a historical relation can be viewed as a tree, where each node
either is a leaf of the tree or may contain another subtree. Only leaves carry time information. The
time information of all other nodes is defined to be the union of the time information of the nodes
of their subtrees. In contrast to their previous work (see section 3.1.2.1) where they restricted
the nesting depth to one, such nested historical relations now allow the modeling of the history
of (hierarchical) relationships. Additionally, relations contained in another relation can be seen
as timestamped with a temporal element which corresponds to the union of the timestamps of all
tuples contained in it.

Example 3.9 Figure 3.2 shows the schema tree of a relation Departments, which contains -
among others — the attributes DeptName and Employees. Node DeptName is a leaf in the schema
tree and contains temporal atoms. Node Employees s composed of nodes EmpID, Name and Salary.
This means that attribute Employees contains relations consisting of attributes EmpID, Name and
Salary.

Department
DeptName Employees
EmpID Name Salary

Figure 3.2: Schema tree for relation Departments

Department

DeptName Employees

EmpID Name Salary

{<{[1985-now]}, IS>} {<{[1996-now]}, 100>} {<{[1996-now]}, Moira >} {<{[1994-1996) }, 15K>,
<{[1996-now]}, 20K >}

{<{[1993—1.1.0.W]},105>} {<{[1993—n0x;vjj>,Andreas > {<{[1993-i{5w]},9K>}

{<{[1970-now]|}, Math>} {<{[1985-1991), {<{[1985-1991), {<{[1985-1991),
[1993-1995)}, 107>} [1993-1995)}, Tom >} [1993-1995)}, 4.5K>}

Note that with respect to the previous evamples, the relation given above models the existences of
the different departments independently of the employees. For example, department 1S exists since
1985 and department Math since 1970.

3.2. TEMPORAL ENTITY RELATIONSHIP DATA MODELS 43

3.1.3 Tuple and Attribute Timestamping

[CT85, CC8T, CCI3] introduce the Historical Relational Data Model (HRDM). In HRDM, data
is timestamped with temporal elements which they call lifespans. A lifespan of an object denotes
those periods of time during which the database models the properties of that object. For example,
the lifespan of an employee object is the time during which data about the employee is stored in
the database.

In their papers, they discuss the interesting question what an appropriate object would be with
which to associate such lifespans. They state that this can be done on the database level, on
relation level, on tuple level or on attribute level. By associating lifespans on database level they
mean that all relations in the database and with them all tuples and attribute values have the same
valid-time period. In other words, they timestamp a database and assume homogeneity throughout
all the levels. This does not buy very much, but only because they assume homogeneity.

In our opinion, it makes perfect sense to timestamp a database, however without assuming
homogeneity. In this way, it is possible to model, for example, that a database was created at a
certain time instant and may be replaced at a later point in time, letting the data contained in
it have their own lifespans which of course have to be within the lifespan of the database. The
database is not no longer physically deleted.

The same holds for timestamping on the relation level. Again, their interpretation is that the
lifespan associated with a relation also denotes the time period during which all tuples in the
relation were valid. In this case, assuming homogeneity again restricts the expressiveness in an
unnatural way. We argue that timestamping relations is a very powerful concept. Since a relation
1s also created at some point in time and possibly dropped later, it has a lifespan itself. The tuples
contained in it, however, do not necessarily need to have the same lifespan, but are restricted to
be contained in it.

With the view of associating lifespans with objects at different levels, assuming homogeneity,
their conclusion is that they should associate lifespans on the tuple level for more flexibility. Addi-
tionally, they timestamp attributes within the relation schemas. This provides for the possibility
of evolving schemas. The lifespan of an attribute in a schema denotes the time period during which
the attribute was part of the schema. The lifespan of a particular attribute value in a relation then
is limited both by the lifespan of the tuple and the lifespan of the attribute in the schema.

3.2 Temporal Entity Relationship Data Models

The entity-relationship model (ER model) [Che76] is a semantic data model. Where the relational
data model describes a database interface, the ER model provides concepts and formalisms for the
description of the semantics of a mini-world in discourse.

In the ER model, application domains are viewed as consisting of entities and relationships
among entities. Cardinality constraints allow the specification of how often two entities may be
related with each other.

An entity is described by its attributes. The type of an entity thus consists of the specification
of the entity’s attributes. Attributes may be atomic or composite. A single-valued attribute has
at most one value at a time instant, where as multi-valued attribute contains a set of values of the
same type. An entity set contains entities of the same type.

The ER model 1s used to model application domains on a higher level. This is usually called
the conceptual modeling of a database. The resulting design is mapped to a data model of a specific
DBMS, for example, to the relational data model.

This section has a look at the temporal extensions proposed for the ER model. First, temporal

ER models which timestamp entities are discussed, then, models which timestamp attributes of
entities.

44 CHAPTER 3. TEMPORAL DATA MODELS

3.2.1 Entity Timestamping

Entity timestamping is similar to tuple timestamping. When mapping an entity to the relational
data model, it is modeled as a tuple. The temporal ER model introduced next thus also suffers
from the vertical temporal anomaly. We have not found temporal ER models which use time
instants or temporal elements to timestamp data.

Timestamp is a Time Interval

[Wuu91] enhance an extended entity relationship model (EER) to support temporal data in future
planning databases. In their model, entities are timestamped using time intervals. They call this
approach object versioning. A temporal entity is represented by a collection of sequenced versions.
Each of these versions has an attribute valid_time containing a time interval. An entity version
stores a state of the temporal entity during a specific valid-time period.

Versions of the same entity cannot overlap in their valid-time intervals. The set of versions
spreads the data about a real world entity over several version entities. This corresponds to what
was earlier introduced as the vertical temporal anomaly.

Each temporal entity has an attribute called lifespan. The union of the valid-time intervals of
versions of the same temporal entity needs to be contained in the lifespan of the temporal entity.
Homogeneity is not required. Their model supports the concept of temporal relationships between
entities, where each relationship may be versioned in the same way as temporal entities.

3.2.2 Attribute Timestamping

Similar to the relational model, there exist proposals for ER models, extended to handle time-
varying data, which timestamp data on the attribute level. The only kind of timestamp for which
we have found proposals is the temporal element. To the best of our knowledge, there are no
temporal ER models applying attribute timestamping with either time instants or time intervals.

Timestamp is a Temporal Element

[EW90, EWK93a] also propose a temporal extension for an EER model (TEER). They incorporate
the concept of lifespan for entities and relationships in the ER model which is a set of disjoint time
intervals. A lifespan of an entity thus is a temporal element T'(entity) C [0, now]. Each entity has
a system-defined surrogate attribute whose value 1s unique for every entity in the database. The
temporal element of the surrogate attribute defines the entity lifespan. Thus each real world object
is member of an entity set and has a surrogate attribute specifying the object’s lifespan.

A subclass can either be specified via a predicate or explicitly by the user. In the former case,
each entity in the superclass that satisfies a defining predicate will be a member of the subclass.
An entity of the superclass belongs to the subclass throughout all time intervals when the predicate
evaluates to true for that entity. In the latter case, the user assigns an entity from the superclass
to become a member of the subclass. Additionally, he specifies the time points the entity is to
be made a member. In both cases, an entity may only be member of a subclass when 1t is also
member of the superclass.

The temporal value of each attribute of an entity is a partial function from temporal element
T(entity) to the domain of the attribute.

Example 3.10 Assume ID; to be a surrogate. A relation Employees, stmilar to the one given in
example 2.5, then can be modeled in TEER n the following way:

SURROGATE EmplID Name Salary
{{[1994 — now]} — IDo} | {{[1994 — now]} — 100} {{[1994 — now]} — Moira} {{[1994 — 1995]} — 15000,
1[1996 — now]} — 20000}

{{[1996 — now]} — ID:} | {{[1996 — now]} — 101} | {{[1996 — now]} — Adrian} {{[1996 — now]} — 9000}
{{[1995 — now]} — ID2} | {{[1995 — now]} — 102} {{[1995 — now]} — Alain} {{[1995 — now]} — 9000}

{1985 — 1990], {1985 — 1990], {1985 — 1990], {11985 — 1990],
[1993 — 1994]} — ID;} [1993 — 1994]} — 107} [1993 — 1994]} — Tom } [1993 — 1994]} — 4500}

3.3. TEMPORAL OBJECT DATA MODELS 45

In [EEAK90], the notion of conceptual objects are introduced as an extension to TEER. In their
approach, an entity is a persistent object that, once its existence becomes known, 1s never deleted.
Each conceptual entity has an existence time which is unrelated to the concept of lifespan. The
upper bound of an entity’s existence time is always infinity. The lower bound is the time the entity
1s materialised. Non-temporal attributes can only be properties of conceptual entity types, since
they hold over the entire existence time of the object. The temporal aspect of the entity — the
history of its attribute values — is modeled as entity roles. A role type is a set of entity roles of the
same type. An entity role has all the time-varying attributes.

Their motivating example for conceptual objects is the following. An employee exists in the
real world as a person. An employee is of interest to a company only when they hire him. In
this case, they may want to record previous information about this person, or if the employee
leaves the company, the employee remains an object of interest. This is depicted in figure 3.3.
Person objects have the non-temporal attributes which are the name of a person and his social
security number. Employees are modeled as entity roles, having the salary and the department as
time-varying attributes.

Person

)

Employee

o

Figure 3.3: Conceptual entity type Person and role type Employee in TEER

We feel that the approach of conceptual objects is a rather cumbersome way to store temporal
data about entities playing different roles. It is also not clear, why the upper bound of the existence
time is always infinity. However the idea of objects playing different roles over time is important.

3.3 Temporal Object Data Models

Proposed temporal object data models mainly take the same approach as the temporal relational
data models and temporal ER models introduced in the previous sections — data may be time-
stamped on object or attribute level. Many proposals use the schema extension approach. They
add special timestamp attributes to the types of objects. Additionally, however, the intrinsic
possibility of object-oriented data models to extend their functionality can be used. None of the
models is generic. Several approaches specify abstract data types for time and use them to model
temporal application domains.

Since there is no single object-oriented data model, categorising the proposals is quite difficult.
So they are discussed according the kind of timestamp they use.

3.3.1 Object Timestamping

Object timestamping is similar to tuple timestamping and thus has the same problems. Flat
relations spread the history of a single real world entity over several tuples, as seen before. In the
following, temporal object data models are described which try to overcome these deficiencies —
either by using a new data structure or by reducing the data redundancy.

3.3.1.1 Timestamp is a Time Instant

[KRS90] describe a temporal data model which overcomes the vertical temporal anomaly. Their
idea is to map time sequences [SK86] to a complex object data model. A time sequence represents

46 CHAPTER 3. TEMPORAL DATA MODELS

the history of an entity of the real world by preserving the the different states of the entity over
time in a time-ordered sequence.

Example 3.11 The following time sequence represents Moira’s employment history in the univer-
sity. Attribute Valid specifies the time point when the values in the tuple become valid. Attribute
Timestamp contains the transaction time, for example, when a transaction modified the tuple.

Valid EmpID Name Salary Dept Timestamp
< 1994, 100, Moira, 15000, IS, 1994 >
< 1996, 100, Moira, 20000, IS, 1996 >

A time sequence belongs to exactly one time sequence relation and is the unit for modification
and data retrieval as the tuple is in the relational model. In [KRS90], time sequences are used on
a conceptual level only. They propose to map them to a data model which allows an easy and
efficient implementation. They identify the complex object data model MAD (molecule-atom data
model) [Mit88, Mit89] to be a well-suited candidate.

The MAD model supports atoms and atom types. Compared with the relational model, an
atom corresponds to a tuple, whereas an atom type contains atoms and thus is similar to a relation.
Additional to the usually supported data types, the MAD model supports the data types TIME,
IDENTIFIER and REFERENCE. An attribute of type TIME contains a time instant of a specified
granularity. Data type IDENTIFIER represents a system defined surrogate which uniquely identifies
an atom. Data type REFERENCE is needed to link atoms together. A value of type REFERENCE is a
duplicate-free list of IDENTIFIER values, all pointing to atoms of the same type [KRS90]. In the
MAD model, a time sequence then is modeled as a sequence of tuples linked by special attributes
of type REFERENCE.

Example 3.12 The time sequence given in example 3.11 is translated wnto the following atom
type:

ATOM_TYPE Employee (

ID : IDENTIFIER;

Valid : TIME(YEAR);

EmpID : INTEGER;

Name : STRING;

Salary : INTEGER;

Dept : STRING;

future : REFERENCE (Employee.past) [0,1];
past : REFERENCE (Employee.future) [0,1];
alive : BOOLEAN;

timestamp : TIME(SECOND));

Attributes ID, future, past, alive and timestamp are added automatically and are not visible
for the user. The references future and past model the sequence of the history. In the case that
attribute alive is false, the valid time denotes the time of death of the time sequence. Otherwise,
valid is the starting time of the validity of the other attributes. YEAR and SECOND specify the gran-
ularity used for the time attributes. Cardinality constraints [0, 1] restrict the historical references
to at most one other atom, namely the previous and the next state of the object.

3.3.1.2 Timestamp is a Time Interval

Instead of using time sequences, [KS92b] propose a direct extension for the data model MAD.
They use the same ideas already presented in section 3.3.1.1. This new temporal complex object
data model TMAD also consists of atoms and atom types. The difference is that now a valid-time
interval is used instead of a time instant to timestamp the atoms.

3.3. TEMPORAL OBJECT DATA MODELS 47

Example 3.13 In TMAD, a schema extension of an atom type is used in order to capture histor-
tcal data. In contrast to example 3.12, a valid-time interval is used for timestamping which makes
attribute alive obsolete.

ATOM_TYPE Employee (

ID : IDENTIFIER;

EmpID : INTEGER;

Name : STRING;

Salary : INTEGER;

Dept : STRING;

future : REF_TO(Employee.past) [0,1];
past : REF_TO(Employee.future) [0,1];

valid_from : TIME(YEAR);
valid_until : TIME(YEAR);
timestamp : TIME(SECOND));

[SCI1] extend the object-oriented data model OSAM* [SLK89] with time. In OSAM* /T, they
timestamp objects with a time interval [Start_time <End_time]. The data redundancy introduced
when timestamping objects is avoided using the so called delta file concept [Roc75, SL76]. The
most recent version of an object contains all attribute values, whereas the predecessors only store
those attribute values that changed. So, accessing the current version of the object does not cause
any overhead. Historical data of the object is searched from the current object instance to the
historical data area. So, similar to the approach presented in HDM [Sar90b, Sar93], they separate
current from historical data thereby neglecting the possibility to store future object states.

Attributes Start_time and End_time are the only two time notions they support. Other time
notions such as transaction time or any other user-defined time are added directly to single objects
in form of temporal rules. This has the advantage over adding additional time attributes to the
type of a class of objects, that storage space can be saved where these notions of time are not
relevant for objects in the class. The disadvantage, however, is that the query response time will
increase due to the additional execution of the rules. Each rule has a timestamp denoting the time
when the rule is active.

In OSAM*/T, an object may be in any number of different classes simultaneously. An instance
is the representation of an object in a specific class and contains the attribute values that char-
acterise that class. Each object instance has its own history. Additionally, OSAM*/T supports
association histories.

Example 3.14 The historical data given in example 2.5 would be modeled in OSAM?*/T the fol-
lowing way:

EmpID Name Salary Dept Start_time End_time

< 100, Moira, 20000, IS, 1996, now >
< #, #, 15000, #, 1994, 1995 >
< 107, Tom, 4500, Math, 1985, 1990 >
< 107, Tom, 4500, Math, 1993, 1994 >

The special value # 1s used instead of repeating redundant values. In Moira’s employment history,
only the salary has changed. The most recent object contains values for all attributes.

3.3.2 Attribute Timestamping

[GO93] use the extensibility of the objectbase management system TIGUKAT [POS92] to imple-
ment a type lattice for time. This type lattice specifies an extensible set of ADT and a rich set
of behaviours to model time. For example, three different kinds of timestamps are supported —
time instants, time intervals and durations of time — and types to model discrete, continuous and

48 CHAPTER 3. TEMPORAL DATA MODELS

dense time. These types then can be subtyped to model, for example, timestamps with different
granularities.

TIGUKAT is behavioural in the sense that all access and manipulation of objects is based on
application of behaviours to objects. The primitive objects of the model include atomic entities,
types, behaviours, functions, classes and collections. Atomic entities are values of the generally
supported types real, integer, string and so on. Types are used to define the common features
of objects. Behaviours specify the semantics of operations that may be performed on objects.
Functions are the implementations of behaviours over types. Classes classify objects according to
their type and are used during object creation. They are controlled by the system. Collections
support general groupings of objects. They are under the control of the user. An object may be
in several collections but only member in the shallow extent of one class.

T_branching

T_continuous

T discrete

T_temporalBhv

Figure 3.4: Part of the type lattice for time in TIGUKAT

T interval

T _timemodel

T _behavior

Figure 3.4 shows part of the type lattice to support time in TIGUKAT. The shaded types
belong to the primitive type lattice, whereas the unshaded ones are abstract time types.

TIGUKAT supports different time models. For example, type T_linear is a subtype of
T_timemodel. Type T_timemodel has a behaviour B_timescale which returns a collection of
T_timescale objects. This behaviour is overwritten in T_linear to return a list of T_timescale
objects, since the linear model of time represents a total ordering of time, representing the time
flowing from the past to the future in a totally ordered way. Branching time is supported with
type T_branching, and allows the representation of several futures states branching out at time
instant now. Prior to now, time is linear.

Type T_interval contains behaviours which allow the comparison of an object’s time interval
with another time interval using one of the comparison predicates introduced in section 2.1.5. An
object then can be timestamped, for example, using objects of type T_interval.

Type T_timescale defines the different models of time — continuous, dense and discrete time.
Instances in T_temporalBhv maintain a history of updates with respect to a particular object.
Behaviour B_history is a behaviour in the interface of type T_temporalBhv. An instance of
T_temporalBhv is called a temporal behaviour.

Example 3.15 Assume object Moira to be a member in class C_employee of type T_employee.
Additionally assume B_salary to be a temporal behaviour defined in the interface of T_employee.
Then the expression B_salary.B history(Moira) returns the salary history of employee Moira.

While TIGUKAT allows the modeling of almost any important concept found in the temporal
database literature, it lacks of an intuitive and comprehensible notation. Additionally, 1t 1s not
clear how expressive this model is with respect to queries.

3.3. TEMPORAL OBJECT DATA MODELS 49

Another approach using time sequences is presented in [RS91, RS93]. [RS91, RS93] extend a
basic object-oriented data model with new types, as depicted in figure 3.5. The shaded types are
the system-defined ones. An object is either extended to a class, a value of a primitive type or a
collection. A collection is, for example, a set or a sequence of objects of a type T.

\ 4
(NV-CIass) (V-Class) Time String (Set[T]) (Sequence[r])

Collections

B

\ 4 \ 4
Employee @[T]
4
TS[Integer]

Figure 3.5: Type lattice in TOODM

In their temporal object-oriented data model TOODM, the system-defined types are subtyped
with the new classes NV-Class, V-Class, Time and TS[T] for temporal support. Types NV-Class
and V-Class represent non-versionable and versionable classes. A user-defined type can be a
subclass of either. A history of the class definitions 1s kept of all classes defined as subtypes of
V-Class. The special collection TSLT] is called a time sequence [SK86, SS87]. A time sequence
object contains a sequence of pairs of values or instances of type T and a time value having type
Time or one of its specialisations.

Example 3.16 Class Employees in TOODM is defined as a subclass of class V-Class. A possible
class definition for employees would be

Define Employee as subclass of V-Class

surrogate : 0ID
empid : Integer
name : String

salary-history : TS[Integer]

The next temporal object data model to be discussed is called T_Chimera [BFG96]. Tt is based
on the idea to extend all data types of the underlying model Chimera [GBB94] into temporal data
types. [BFG96] introduce the notion of temporal types to handle in a uniform way temporal and
non-temporal domains. For each type in Chimera, a temporal type and a set of legal temporal
values is defined in T_Chimera.

The value of a variable of temporal type temporal(T) can be represented as a set of pairs (t,
£(t)) where £ is a partial function and t is a time instant. Since values do not change at each
time instant, the variable’s value can be represented more concisely as a set of pairs

{<I1, Vi>, ..., <I,, V,>}.

where Iy, ..., I, are time intervals, closed on the lower and upper bound, and Vi, ..., V,, are values
of type T.

50 CHAPTER 3. TEMPORAL DATA MODELS

Classes in T_Chimera may be static or historical. In case one of the class attributes has a
temporal type, the class 1s considered to be historical. Otherwise it is static. A class contains
information for the use of the class and its instances. For example, the set of attributes of the class
instances is given as a class attribute. Each attribute is specified as a (name, type) pair. Each class
also contains a history class-attribute containing the history of class membership of class instances.
Additionally, each class has a lifespan as a class attribute.

Similar to classes, objects are historical if at least one of its attributes is of a temporal type.
Objects also have a lifespan attribute and contain the history of their class memberships.

Example 3.17 The salary history of an employee can be modeled in T_Chimera as a temporal
integer lype temporal (integer). His employment number and name are modeled as attributes of
a non-temporal integer and string type, respectively. The class Employees containing instances of
employee objects is then described as follows:

¢ = Employees

type = historical

lifespan = [1985, now]

attr = { (EmpID, string), (Name, string), (Salary, temporal(integer)), ... }

history = (number_of_employees : { <[1985,1988], 1>, <[1989,1990], 2>, ...},
ext : { <[1985,1990], Tom>, <[1989,1995], Martin>, ...},
)

Attribute c specifies the name of the class. Attribute type denotes that the class is historical
since one of its class attributes, namely number of _employees, s temporal. Attribute attr lists
the properties an instance of class Employees has. Attribute history contains the class attribute
number of employees, and the membership history of class instances in ext. Tom and Martin are
actually object identifiers referencing two instances of this class.

3.3.3 Tuple and Attribute Timestamping

[DW92, WD93] also model time as an ADT and use it to extend object-oriented data model
OODAPLEX [Day89] which is based on the functional data model DAPLEX [Shi81]. In their
approach, time is modeled as a generic type that carries most general semantics of time. The
different notions of time such as discrete, dense or continuous are modeled as subtypes of type
time.

In OODAPLEX, properties of objects, relationships among objects and operations on objects
are all uniformly modeled by functions which are applied to objects. Objects that have similar
properties and behaviour are grouped into types. So a type specifies a set of functions that can be
applied to instances of the type.

Time-varying properties of objects, relationships among objects or behaviour are modeled in
OODAPLEX by functions that return another function that maps time elements into snapshot
values. OODAPLEX has the flexibility to support both attribute and object timestamping.

Example 3.18 We model temporal employee objects having — among others — a name, a salary
and a department property, in OODAPLEX. Attribute timestamping using the time ADT can be
achieved the following way:

type Employee is object
function name(e: Employee -> n: String)
function salary(e: Employee -> f:(t: Time -> s: Money))
function dept(e: Employee -> f:(t: Time -> d: Department))

3.4. SUMMARY 51

Function name models an attribute which is constant over time. Functions salary and dept model
time-varying attribute values — the salary history of an employee and the history of memberships
wn different departments.

It 1s also possible to use object timestamping in OODAPLEX. In this case, temporal employee
objects are modeled with a state function that maps from time to snapshot states of employees. A
snapshot state is modeled as a conventional, non-temporal employee type:

type Employee is object
function state(e: Employee -> f: (t: Time -> s : Snapshot_Employee))

type Snapshot_Employee
function name(e: Snapshot_Employee -> n: String)
function salary(e: Snapshot_Employee —> s: Money)
function dept(e: Snapshot_Employee -> d: Department)

They also support a lifespan function for objects. It 1s a polymorphic function accepting both
a type T and a database DB as input parameters. The function lifespan(T) returns the union
of lifespans of all objects in the extent of type T. The function lifespan(DB) return the union of
lifespans of all types in DB.

Using this lifespan function, they define several basic constraints between the lifespans of ob-
jects, types and a database. A first constraints demands that

lifespan(o/T) C lifespan(T) C lifespan(DB)

where 1ifespan(o/T) denotes the lifespan of an object o as an instance of type T. This constraint
is actually superfluous since the definition of the 1ifespan function always guarantees that this
constraint holds. For temporal attributes, a second constraint is defined, demanding that their
values histories need to be restricted to the lifespan of the object. A third constraint requires that
an object’s lifespan as an instance of a subtype 1s contained in the lifespan the object is also an
instance of the corresponding supertype. They define more constraints which, however, follow from
the three constraints discussed above.

3.4 Summary

[Cli82, CW83] describe a temporal data model which supports historical relations. A historical
relation is viewed as a sequence of relation instances indexed by valid time. [JMS79] use schema
extension for tuple timestamping with time intervals. [NA88, NA89, NA93] introduced the Time
Normal Form in their temporal data model TRM. They propose to decompose relations containing
asynchronous attributes. TQuel [Sno84, Sno87, Sno93] defines the semantics of queries and update
operations using snapshot reducibility. HDM [Sar90b, Sar93] separates current and historical
data physically into two relations. BCDM [Sno95b] is a conceptual data model which can be
mapped to other temporal data models. [CT85, Tan86] store entity histories in NFNF relations
but restrict the nesting to one level. This is given up in the model proposed in [TG89, Tan93],
where they allow arbitrary nesting of historical relations. [GV85, Gad86, Gad88, GN93] discuss the
vertical and horizontal temporal anomalies and propose a temporal data model which overcomes
these deficiencies. [CT85, CC87, CC93] discuss different levels of timestamping data, but under
the assumption of homogeneity. Their temporal data model HRDM provides for the possibility of
evolving schemas. [Wuu91] stores the histories of entities as sequences of versions. In [EEAK90], the
concept of conceptual objects is introduced which allows a simple form of temporal role modeling in
an temporal EER model. [KRS90, KS92b] extend the complex object data model MAD to support
historical data. Their model using references to past and future states allows the modeling of the
history of a real world entity as a single complex object. In OSAM*/T [SC91], an object can

52 CHAPTER 3. TEMPORAL DATA MODELS

appear in different classes simultaneously, where each instance has its own history. Additionally,
temporal rules are supported which allow the specification of other time notions for specific objects.
OSAM*/T uses object timestamping and a special form of storage to reduce the data redundancy.
[GO93] specify a type lattice of abstract data types for time in the object data model TIGUKAT.
These types and behaviours can be used to model different kinds of timestamps, for example, time
instants and time intervals, and different models of time, namely dense, continuous and discrete
time. TOODM [RS91, RS93] also extend a type lattice. Historical attributes are modeled as time
sequences containing objects of a specific type. T_Chimera [BFG96] propose a temporal object
data model by introducing temporal types. [DW92, WD93] propose an ADT for time for the
functional data model OODAPLEX.

All models described in this section use — in one way or another — the schema extension ap-
proach. Additionally, proposals were introduced which discuss the timestamping of data on dif-
ferent levels. HDM [Cli82, CW83] timestamps relations with time instants. The several other
approaches use tuple and object or attribute timestamping. The most flexible approach is pro-
posed in [TG89, Tan93], where data is timestamped on attribute level, and each attribute may
contain again a relation using attribute timestamping. This provides for timestamping on different
levels of nesting. The ideas used for temporal object data models are similar to those already used
in INF and NFNF relational data models.

An important topic is the vertical temporal anomaly. Several solutions were proposed to over-
come this problem. One is to support a special coalescing operation or assume relations to be
automatically coalesced. Another one is using a NFNF relational data model, where the history
of an entity can be stored within a single tuple using sets of timestamped attributes. Some tem-
poral object data models use a similar approach called time sequences. The temporal data models
proposed in [Gad88, Y88, Sno87, Tan86, NA8S, NA&I] are examples which do not represent the
history of a real world entity in a single tuple.

The question whether or not to extend a data model with temporal semantics or to implement
it as an abstract data type is another issue. This chapter also introduced approaches proposing
ADT instead of changing the underlying data model. A question not discussed in these proposals
1s efficiency.

Chapter 4

A Temporal Relational DBMS :
TimeDB

This chapter describes the prototype temporal DBMS TimeDB [Ste95] and the translation algo-
rithm developed to map temporal queries, temporal data definition and modification statements and
temporal constraints into standard SQL statements. First, an overview of the features of TimeDB,
its historical background and a short introduction to the concepts and ideas behind ATSQL2, the
language implemented in TimeDB, are given. Next, the translation of valid-time queries, specified
using ATSQL2, into standard SQL statements is described. Then the semantics of bitemporal
algebra operations are discussed where they are different from the unitemporal ones. Finally,
the approach to check temporal constraints used in TimeDB is described, and the architecture of
TimeDB is presented.

4.1 Features of TimeDB

On one hand, TimeDB uses the extension approach with respect to the data structures, on the
other hand, however, it generalises the query, modification, data definition and constraint spec-
ification language based on SQL. According to the classification introduced in this thesis, the
implementation of an extension or generalisation of a language such as SQL is based on changes
done to the DBMS software. The temporal DBMS TimeDB, however, uses a layered approach
which means that it was built as a front-end to a commercial DBMS which translates temporal
statements into standard SQL statements. This way, it is possible to support features such as
persistence, concurrency, recovery without having to implement them from scratch, since there is
no access to the source code of a commercial DBMS.

The translation algorithm implemented in TimeDB is a general one in the sense that it can be
used to translate different temporal query and modification languages into standard SQL state-
ments. It was developed for the bitemporal query language ChronoSQL (see e. g. [Pul95]), and
then was reused in TimeDB for the language ATSQL2 [BJS95, SBJS96b, SBJS96a]. ATSQL2 is a
temporally complete query language which was designed collaboratively by an international group
of researchers. It is based on SQL and supports temporal updates, temporal views and temporal
assertions, table- and column-constraints.

TimeDB is a bitemporal DBMS. It can handle valid-time operations, transaction-time operations
and operations referring to both time lines simultaneously. Operations referring to only one time
line are denoted as unitemporal. The implementation of the unitemporal algebra operations and the
translation of the valid-time ATSQL2 queries to standard SQL statements will be discussed in the
following sections. Transaction-time queries can be evaluated using the same algorithms due to the
orthogonal treatment of valid time and transaction time. Bitemporal queries are translated using
the same translation algorithm, however need different implementations of some algebra operations.

53

54 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

As the reader will see, the concepts used in the query translation process of TimeDB can also be
used for translating modification statements and temporal constraint checking operations.

4.2 The History of TimeDB and ATSQL2

During the last 15 years, many temporal query languages for relational DBMS have been proposed.
However, almost none of these languages have been implemented. [Boh95] lists 13 implementations
of systems which either qualify as temporal DBMS or are somehow related to temporal databases
(for example, a temporal database generator). Out of these, only two are available prototypes
which implement temporal query languages based on SQL. A closer look at these implementations
reveals two important restrictions found in most of the temporal data models and systems. First,
most of the implementations focus on the query language, neglecting updates, rules (views) and
integrity constraints. Second, with respect to the query language, a lot of work has been done on
temporal selections and joins, but almost nothing on temporal negation.

The bitemporal relational DBMS TimeDB implements the language ATSQL2 [BJS95, SBJS96b,
SBJS96a] which is based on the standard query language SQL[Dat89, MS93]. ATSQL2 includes
not only a bitemporal query language, but also a bitemporal modification, data definition and
constraint specification language. It is the result of integrating three different approaches, namely

e TSQL2 [Sno95b], a temporal query language based on SQL,
e ChronoLog [BM94, Boh94], introducing the concept of temporal completeness

e Bitemporal ChronoSQL, developed by the author of this thesis (see, for example, [Pul95]),
featuring a bitemporal query language.

TimeDB thus supports a temporal complete query language based on SQL, temporal modifi-
cation statements, temporal views and temporal integrity constraints. Since the query language
is temporally complete, it features temporal versions of all algebra operations, including negation.
So, TimeDB can be considered the first complete temporal DBMS implementation.

In chapter 3, the data model of TSQL2 was introduced. TSQL2 was a first attempt to specify
a standard of a temporal query language. Many researchers from the area of temporal databases
have contributed to this language. The idea was to consolidate different approaches to temporal
data models, to achieve a consensus query language and an associated data model upon which
future research could be based.

In 1994, Richard Snodgrass started working with the ANSI and ISO SQL3 committee to propose
a new part to SQL3, termed SQL/Temporal. This was formally approved in July, 1995. The idea
was to use the TSQL2 for the SQL/Temporal standard. There were several concerns voiced about
the TSQL2 design, however. For example, in TSQL2, duplicates were not allowed due to the
implicit enforcement of coalescing, the syntax was confusing, there was no formal semantics and
no implementation.

The notions of temporal semi-completeness and completeness introduced in [BM94, Boh94]
were used to evaluate the completeness of TSQL2 [BJS95] which lead to a major redesign of the
language. This work was started by Michael Bohlen, Christian Jensen and Richard Snodgrass.
The new language which evolved was called ATSQL2 (Applied TSQL2).

In 1994, the author of this thesis developed a bitemporal DBMS called bitemporal ChronoSQL
which, on one hand, treated valid-time queries and transaction-time queries orthogonally, and, on
the other hand, supported bitemporal queries. In 1995, the author of this thesis was invited to
participate in the ATSQL2 project. During this collaboration, he migrated his prototype system
ChronoSQL to TimeDB. Besides the influence of bitemporal ChronoSQL on the treatment of valid
time and transaction time in temporal statements of ATSQL2, the implementation also helped
refining and clarifying the language ATSQL2 as a whole and supplied the temporal database
community with a complete temporal DBMS.

4.3. ATSQL? 55

In 1996, ATSQL2 has been proposed for the SQL/Temporal standard. The two change pro-
posals [SBJS96b, SBJS96a] were unanimously accepted by ANSI and forwarded to ISO. These
proposals have not yet been voted on by the ISO committee.

4.3 ATSQL2

In this section, a short introduction to the main ideas and concepts behind ATSQL2 [BJS95,
SBJS96b, SBJS96a] is given. TimeDB implements ATSQL2 as it was proposed for the
SQL/Temporal standard in [SBJS96b, SBJS96a]. First, the requirements which served as the
basis for the definition of ATSQL2 are listed. Then it is shown how SQL [Dat89, MS93] was
extended to ATSQL?2 to fulfill these requirements.

4.3.1 Requirements for ATSQL?2

As mentioned previously, ATSQL2 is an extension of SQL. It defines syntax and semantics of the
temporal query, modification and constraint specification language.

When extending SQL to ATSQL2, one focus was to give maximal support for migrating a
non-temporal database to a temporal database. The notion of upward compatibility [BJS95] and
temporal upward compatibility [SBJS96b] describe the requirements for ATSQL2 with respect to
database migration. Upward compatibility demands that SQL is a subset of ATSQL2. So every
legal SQL statement may also be used with the same semantics in ATSQL2. Temporal upward
compatibility specifies requirements to the query and modification language of ATSQL2 after a
non-temporal database has been migrated to a corresponding temporal database. It demands that
each legal SQL query and modification statement, executed on a temporal database, leads to the
same result as if 1t were executed on the corresponding non-temporal database.

Another focus when designing ATSQL2 was to make the transition from SQL to ATSQL2 also
easy for programmers. Non-temporal and temporal queries and modification statements must be
syntactically similar. According to the definition of temporal completeness, two queries q and gt
are syntactically similar if there exist two possibly empty strings $; and Ss such that q* = $; q
So. A programmer thus can write a non-temporal SQL statement and turn it into a temporal one
by simply adding a keyword in front of the non-temporal query, for example.

In ATSQL2, temporal statements are classified into two classes — sequenced and non-sequenced
statements [SBJS96b]. Sequenced statements have snapshot reducible semantics. So, the result
of a sequenced query is equivalent to the sequence of the results of a corresponding non-temporal
query evaluated on each database state. This means that a particular state of the result is derived
solely from the database state at the same time instant. This i1s depicted in figure 4.1.

3y
i

ty t2 t3

Database States

Query Result States

» Time

Figure 4.1: A sequenced query q' uses corresponding database states for each resulting state

There exists another important class of statements which requires several database states to
be examined, for example, when comparing different database states with each other or when
querying database state transitions. This kind of statement is called non-sequenced. Figure 4.2

56 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

shows possible references to different database states to calculate a query result. A single statement
may be composed of both sequenced and non-sequenced statements.

[j E] Database States

)]
[

(1

i i » Time
f to

Query Result States

® may use several database states for a single resulting state

Figure 4.2: A non-sequenced query q”

Since ATSQL2 supports both valid time and transaction time, the step from a non-temporal to
a temporal statement may be done either with respect to valid time or transaction time or both.
Thus, another important requirement is that these different time lines are treated orthogonally.
Orthogonality on valid time and transaction time demands that any query may be evaluated with
respect to valid time, transaction time or both. So, for each valid-time query, a transaction-time
or bitemporal query exists. This approach was first used for bitemporal ChronoSQL [Pul95].

4.3.2 The Query Language of ATSQL2

The requirements of upward compatibility, temporal upward compatibility and orthogonality on
valid time and transaction time together with the requirements listed in the definition of temporal
completeness — syntactical similarity, sequenced and non-sequenced semantics of statements, sub-
stitutability of a relation in a query by another query and the support of both Allen’s comparison
operators and coalescing — served as guidelines during the design of ATSQL2. These goals were
achieved mainly by adding four extensions to SQL.

First, flags were introduced to be able to express which one of four possible semantics — upward
compatibility, temporal upward compatibility, sequenced and non-sequenced semantics — should be
used to evaluate an ATSQL2 statement. Second, ATSQL2 supports the concept of derived tables.
Derived tables, as defined in SQL3 [SQL93], allow a table in the FROM-clause to be substituted
by a query. In ATSQL2, any table (temporal or non-temporal) may be substituted by a query.
Third, a set of temporal comparison operators is supported having the same expressive power as
those proposed by [AlI83]. Fourth, a keyword is added to express if a (intermediate) result should
contain only tuples with maximal time periods or not (coalescing). With these extensions, it is
possible to fulfill all the requirements described above.

The following subsections discuss in more detail the four different levels of functionality sup-
ported in ATSQL2. These levels are introduced following a migration process going from non-
temporal SQL statements to temporal ones stated in ATSQL2.

4.3.2.1 Upward Compatible Queries

As mentioned before, upward compatibility demands that any non-temporal SQL statement and
any non-temporal table or view can still be used in ATSQL2. Thus, TimeDB contains SQL as a
subset. The advantage of supporting upward compatibility is the fact that legacy data and code
can still be used when migrating a non-temporal database application to a temporal DBMS. The
following example uses standard SQL statements which are part of TimeDB.

Example 4.1 Assume that we want to store data about employees in a company. We migrate the
data and code from a non-temporal relational DBMYS to TimeDB. First, we create a non-temporal

4.3. ATSQL? 57

relation containing the employment number, the name, the salary and the employment number of
the manager of each employee and then insert some data:

CREATE TABLE Employees (EmpID INTEGER, Name CHAR(30), Salary INTEGER, MgrID INTEGER);
INSERT INTO Employees VALUES (111, ’John’, 8700, 111);

INSERT INTO Employees VALUES (112, ’Paul’, 9100, 111);
INSERT INTO Employees VALUES (113, ’George’, 8300, 111);

This results in the following table :

EmpID | Name | Salary | Manager
111 John 8700 111
112 Paul 9100 111
113 George | 8300 111

We now can query this data for employees earning more than 9000, together with the names of
their managers:

SELECT el1.EmpID, el.Name, el.Salary, e2.Name Manager
FROM Employees el, Employees e2
WHERE el1.MgrID = e2.EmpID AND

el.Salary > 9000;

This query returns the following table:

el.EmpID | el.Name | el.Salary | Manager
112 Paul 9100 John

4.3.2.2 Temporal Upward Compatible Queries

When data is migrated from a non-temporal relational DBMS to a temporal relational DBMS, the
non-temporal (snapshot) tables can be altered, for example, to valid-time tables. This means that
after migration, the data is kept track of with respect to valid time. The user however should still
be allowed using the legacy queries and should get the same results as if he was working with the
non-temporal relational DBMS. This can be achieved by evaluating legal SQL queries on snapshots
of the temporal tables at time instant now. This is called temporal upward compatibility.

Temporal upward compatibility thus demands that any legal non-temporal query q executed
on a temporal database db' yields the same result as if executed on the corresponding snap-
shot database db = 7,4, (db') of a non-temporal DBMS. A non-temporal DBMS stores only one
database state, usually the one representing the most recent state of the real world. With respect
to a temporal database db’, this corresponds to selecting the database state at time instant now.

The advantage of temporal upward compatibility is the fact that code of a non-temporal appli-
cation can still be used on migrated temporal databases, which means that application programs
still run without further changes, and users may query the database in the same manner as before
migration.

Example 4.2 On October 21, 1996, we migrate the table Employees given in example 4.1 to a
valid-time table. This means that we will keep track of the history of employees with respect to
valid time from October 21, 1996 on.

ALTER TABLE Employees ADD VALID;

58 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

This statement changes the schema and content of table Employees such that additionally the valid
time of the tuples is recorded. The valid time of the tuples contained in Employees is then set to
[1996/10/21 - o0). It is still possible to use queries and update statements of a non-temporal
application on magrated tables. Assume that we give John a salary raise October 29, 1996. To
store this fact in the database, we execute the following legal SQL modification statement at this
date:

UPDATE Employees SET Salary = 9300 WHERE Name = ’John’;

After this database modification, the valid-time table Employees looks like

VALID EmpID | Name | Salary | MgrID
[1996/10/21 — o0) 112 Paul 9100 111
[1996/10/21 — oo0) 113 George | 8300 111
[1996/10/21 — 1996/10/29) | 111 John | 8700 111
[1996/10/29 — o0) 111 John | 9300 111

The non-temporal query of example 4.1,

SELECT el1.EmpID, el.Name, el.Salary, e2.Name Manager

FROM
WHERE

executed on the valid-time table Employees at October 29, 1996, then returns the following result:

Employees el, Employees e2

el.MgrID = e2.EmpID AND

el.Salary > 9000;

el.EmpID | el.Name | el.Salary | Manager
112 Paul 9100 John
111 John 9300 John

4.3.2.3 Sequenced Queries

Sequenced semantics of queries expresses that the queries are evaluated using temporal algebra
operations having snapshot reducible semantics. This means that a temporal algebra operation
interprets the timestamps of tuples — be it valid time and/or transaction time — and uses them for
the calculation of the tuple timestamps of the resulting relation.

In ATSQL2, syntactical similarity of non-temporal and temporal statements is achieved by
introducing keywords VALID and TRANSACTION, which can be written in front of any legal SQL
query. These keywords express which temporal dimension shall be used for temporal evaluation of
the query. If the query should be evaluated with respect to both valid time and transaction time,
the two keywords are combined as VALID AND TRANSACTION.

Example 4.3 We formulate the query given in example 4.1 as a sequenced query with respect to
valid-time by simply adding the keyword VALID in front of the corresponding non-temporal query:

VALID

SELECT el1.EmpID, el.Name, el.Salary, e2.Name Manager
FROM Employees el, Employees e2

WHERE el1.MgrID = e2.EmpID AND

el.Salary > 9000;

This query returns the history of employees whose salaries are higher than 9000 along with the
valid-time intervals:

4.4. TRANSLATION OF TEMPORAL QUERIES TO STANDARD SQL STATEMENTS 59

VALID el.EmpID | el.Name | el.Salary | Manager
[1996/10/21 — 1996/10/29) | 112 Paul 9100 John
[1996/10/29 — o0) 112 Paul 9100 John
[1996/10/29 — o0) 111 John 9300 John

The sequenced query in example 4.3 returns two tuples with adjacent valid-time periods for
employee Paul. This is caused by the temporal cross product of table Employees with itself which
is needed to find the manager’s name for each employee. John is Paul’s manager, and since John
has got a salary raise October 29, 1996, he is listed twice in table Employees. So the splitting of
the information about Paul is caused by John’s salary raise.

The temporal cross product calculates the common time period of both tuples involved and
thus returns a single timestamp for each resulting tuple. The result is independent of the order of
execution of the algebra operations.

4.3.2.4 Non-Sequenced Queries

As mentioned before, there is a second class of temporal statements which need to examine different
database states for a single resulting state. These statements are called non-sequenced. Non-
sequenced semantics of queries express that the queries are evaluated using algebra operations
which treat the time information like any other attribute. Such algebra operations have the same
semantics as the corresponding non-temporal operations and do not interpret the timestamps of
tuples — be it valid time and /or transaction time — but allow these timestamps to be referred to as if
they were user-defined attributes. This way, it is possible to access and compare different database
states in a query and retrieve, for example, time points of specific database state transitions.

Queries comparing different database states usually calculate the cross product of the temporal
relations involved and then use join-conditions for comparison. If the cross product operation with
sequenced semantics were used, the resulting table would only contain a single timestamp for each
time line involved — the timestamp specifying the common time period of the tuples composed to a
new tuple. This does not allow the comparison of the different time periods of the tuples involved.
Instead, the cross product operation with non-sequenced semantics has to be used which treats
the timestamps as user-defined attributes. This means that for each relation involved in the cross
product, a separate timestamp appears in the resulting table.

Example 4.4 We want to find out when data about employees has changed with respect to valid-
time, for example, due to salary raises. This means that we have to find tuples containing infor-
mation about the same employee having adjacent (meeting) valid-time intervals. In ATSQL2, the
valid-time intervals in a relation R can be referenced using VALID(R).

NONSEQUENCED VALID
SELECT BEGIN(VALID(a2)), a2.Name
FROM Employees al, Employees a2
WHERE al.EmpID = a2.EmpID AND
VALID(al) meets VALID(a2);

BEGIN(VALID(a2)) | a2.Name
1996/10/29 John

In example 4.4, the cross product of tables a; and a5 is calculated using non-temporal semantics,
and valid-time is treated as a user-defined attribute, accessible using the expressions VALID(aq)
and VALID(as).

4.4 Translation of Temporal Queries to Standard SQL
Statements

The following subsections describe how ATSQL2 queries are translated into standard SQL state-
ments. Additionally, the implementation of the unitemporal algebra operations is sketched and

60 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

the bitemporal algebra operations are described.

4.4.1 The Basic Idea of the Translation Algorithm

The main problem when evaluating temporal queries using standard SQL statements is that time
intervals have to be calculated during the evaluation of the query. This means that a way needs to
be found to integrate these time calculation statements somewhere in the standard SQL statements.

The idea of the translation algorithm used in TimeDB is the following: a temporal query
is translated into a temporal algebra expression using the temporal set operations union (U'),
intersect (N') and difference (<). Each argument to these set operations is either a simple algebra
expression using a temporal select (o'), project (7*) and cross product (x") operation or the result
of another temporal set operation. Each simple algebra expression using only a combination of
a select, project and cross product operation can then be evaluated separately using a standard
SELECT-FROM-WHERE statement. These intermediate results are stored in temporary tables and then
used to calculate other parts of the expression.

This way, it 1s possible to coalesce intermediate results prior to further evaluation of the algebra
expression or to resolve temporal queries with correlated subqueries. Also, temporal calculations
such as temporal negation can be done for intermediate results.

In TimeDB, a valid-time interval I = [vts #$ - vte #$), closed at the lower bound and open
at the upper, is mapped internally to two attributes vts_ #$ (valid-time start) and vte #$ (valid-
time end). Thus, each valid-time relation will have two additional (hidden) attributes. Transaction-
time tables are extended accordingly. Bitemporal tables contain attributes for both valid time and
transaction time.

Time instants such as 1996/6/12 are stored as integer values, expressing the amount of chronons
gone by with respect to a reference date. Recall that a chronon is the smallest non-decomposable
time unit used, for example, a second. The reference date and granularity of a chronon depends
on the calendar used. TimeDB supports several different calendars and allows the specification of
new ones.

4.4.2 Temporal Upward Compatible Queries

Due to the temporal upward-compatibility requirement, legal non-temporal SQL queries have to
return the same results when executed on temporal tables as if they were executed on corresponding
non-temporal tables. This is done by first selecting the data valid at time instant now in the tables
referenced by the query and leaving away any timestamp attributes prior to further evaluation.

Example 4.5 The temporal upward compatible query used in example 4.2 s translated to the
following standard SQL query

SELECT a#$_0.EmpID, a#$_0.Name, a#$_0.Salary, a#$_1.Name Manager
FROM Employees a#$_0, Employees a#$_1
WHERE |now| >= a#$_0.vts_#$ AND |now| < a#$_0.vte_#$ AND
|lnow| >= a#t$_1.vts_#$ AND |now| < a#$_1.vte_#$ AND
a#$_0.MgrID = a#$_1.EmpID AND
a#t$_0.Salary > 9000;

where |now| is an integer-value representing time instant now with respect to the calendar used.
The cryptic aliases of the form a#$_0 and so on are system generated and should not interfere with
names in the query chosen by the user.

4.4.3 Implementing the Temporal Algebra

TimeDB implements the temporal algebra operations union (U"), difference (<#), intersection (N?),
selection (o), projection (7') and cross product (x*) using standard SQL statements. Due to the

4.4. TRANSLATION OF TEMPORAL QUERIES TO STANDARD SQL STATEMENTS 61

orthogonal treatment of valid time and transaction time, only one set of these algebra operations has
to be implemented for unitemporal operations. When calling these generic operations, a parameter
specifies which of the timestamp attributes (vts_#$ and vte_#$ for valid-time intervals and tts_#$
and tte #$ for transaction-time intervals, respectively) should be used to calculate the resulting
timestamps. Bitemporal algebra operations are implemented separately.

The following subsections describe how the unitemporal operations can be implemented using
standard SQL, without focusing on efficiency. However, TimeDB was built such that it allows an
easy replacement of the implementation of any of these operators by a more efficient one. In fact,
it would also be possible to have several different implementations of the same algebra operation
and have a query optimiser choose the best implementation for a specific query. The algorithm for
unitemporal set difference presented here is based on the one used in ChronoLog [BM92, Boh94].

4.4.3.1 Temporal Set Union Operation

Assume two union-compatible valid-time relations Ry and Ro with the attributes

Ry = < A, As, .. A, vis #$, vie #$ >
Ro = < By, B, ..., B, vts_#$, vie_ #$ >

The valid-time union operation U of Ry and Ry is the same as the non-temporal union:
R1 v R =Ry UR»

The temporal set union operation does not perform any coalescing on value-equivalent tuples.
The result of a temporal set union of two relations thus may lead to a relation containing value-
equivalent tuples with overlapping time periods.

4.4.3.2 Temporal Set Difference Operation

Unitemporal set difference of two relations is more complicated to calculate. Assume again two
union-compatible valid-time relations Ry and Rs, having attributes

Ry = < A, As, .. A, vis #$, vie #$ >
Ro = < By, B, ..., B, vts_#$, vie_ #$ >

The valid-time difference of Ry and Rs,
R1 = R1 & Rz,
can be translated into the following standard SQL statements:

INSERT INTO R1
SELECT a0.vts_#$, al.vts_#$, a0.A1, a0.A2, ..., a0.An
FROM R1 a0, R2 a1l
WHERE al.vts_#$ > a0.vts_#$ AND
al.vts_#$ < a0.vte_#$ AND

a0.A1 = al1.B1 AND
a0.A2 = al1.B2 AND
.. AND
a0.An = al.Bn;

INSERT INTO R1
SELECT al.vte_#$, a0.vte_#$, a0.A1, a0.A2, ..., a0.An
FROM R1 a0, R2 a1l
WHERE al.vte_#$ > a0.vts_#$ AND
al.vte_#$ < a0.vte_#$ AND
a0.A1 = a1.B1 AND

62 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

a0.A2 = al.B2 AND
AND

a0.An al.Bn;

DELETE FROM R1 a0
WHERE EXISTS (SELECT al.=*
FROM R2 a1l
WHERE ((a0.vts_#$ >= al.vts_#$ AND al0.vts_#$ < al.vte_#$) OR
(al.vts_#$ >= a0.vts_#$ AND al.vts_#$ < a0.vte_#$))

AND
a0.A1 = al1.B1 AND
a0.A2 = al1.B2 AND
N AND
a0.An = al.Bn);

The unitemporal set difference R1 <¥ R2 returns the tuples in R1 with time intervals during
which no value-equivalent tuple in R2 can be found. In the case that the resulting time interval is
empty, the tuple is abandoned. Assume t1 to be a tuple in table R1, having a valid-time interval as
depicted in figure 4.3. Tuple t2 is a value-equivalent tuple in table R2. There are two main cases
distinguished in the algorithm given above. The first case considers a possible non-overlapping part
of tuple t1 at the beginning of its valid-time interval, the second case a possible non-overlapping
part of tuple t1 at the end. The first INSERT-statement adds tuples to table R1 for which a value-
equivalent tuple in R2 exists whose valid-time interval overlaps as depicted in case 1. These tuples
are timestamped with the non-overlapping time interval of tuple t1, in this case with an interval
[t1.vts #$ <t2.vts#3). The second INSERT-statement does the same for tuples in R1 for which a
value-equivalent tuple in R2 exists whose valid-time interval overlaps as depicted in case 2. These
tuples are timestamped with the non-overlapping time interval of tuple t1, in this case with an
interval [t2.vte #$ <tl.vte_#$%). This approach also covers the case that the valid-time interval
of tuple t2 1s contained in the valid-time interval of tuple t1. The next step is to delete all those
tuples in table R1 for which value-equivalent tuples in R2 exist having overlapping time intervals.

t1

Case 1: 2

L

Case 2:

Time

Figure 4.3: The two cases of overlapping time intervals considered in the calculation of temporal
set difference

In the algorithm presented above, table R1 is modified. If R1 is a user-defined table, the
temporal set difference of two tables must be calculated on an auxiliary table. The user-defined
table 1s copied before calculating a temporal set difference. TimeDB stores all intermediate results
in auxiliary tables. These auxiliary tables are then used as arguments for other operations.

4.4. TRANSLATION OF TEMPORAL QUERIES TO STANDARD SQL STATEMENTS 63

4.4.3.3 Temporal Set Intersection Operation

The unitemporal set intersection operation can be rewritten by replacing the temporal intersection
operation with a pair of temporal set difference operations. Assume again two union-compatible
valid-time relations R; and Ry, having attributes

Ry = < A, As, .. A, vis #$, vie #$ >
Ro = < By, B, ..., B, vts_#$, vie_ #$ >

The valid-time set intersection of Ry and Ro, Ry NY Rg, can be written as
Ry & (Rl =4 Rz)
Another way to evaluate the unitemporal set intersection is to rewrite it as a temporal join:

SELECT DISTINCT A1, A2, ..., An,
GREATEST(R1.vts_#$, R2.vts_#3) vts_#$,
LEAST(R1.vte_#$, R2.vte_#$) vte_#$
FROM R1, R2
WHERE R1.A1 = R2.B1 AND
R1.A2 = R2.B2 AND
N AND
R1.An = R2.Bn AND
GREATEST(R1.vts_#$, R2.vts_#3$) < LEAST(R1.vte_#$, R2.vte_#$)

The intersection of the valid-time periods is calculated using GREATEST and LEAST. These functions
are available in Oracle! and calculate the greatest (least) value in a list of values. Calculating the
greatest lower and the least upper bound of the time intervals involved returns the intersection
of them if the resulting lower bound is smaller than the resulting upper bound. This condition
1s checked in the WHERE-clause. If the time periods involved do not have a common time interval
(GREATEST(R1.vts #$, R2.vts#$) > LEAST(R1.vte #$, R2.vte #$)), then the resulting tuple
i1s abandoned.

In contrast to the relational data model, SQL supports duplicates in relations. Thus, the
temporal algebra should also provide for handling bags of tuples. A problem arises when the
implementation of the unitemporal intersection operation as presented above is used for relations
containing duplicates. Translating a temporal intersection operation into temporal difference op-
eration returns duplicates according to the first argument relation of the intersection operation.
For example, if the first relation contains three times a tuple which occurs twice in the second
relation during a common time period then it will occur three times in the result. With respect
to translating a temporal intersection operation into a temporal natural join of two relations, the
same restriction holds as in the non-temporal case. Set intersection and a corresponding natural
join are only equivalent if the relations do not contain duplicates. Otherwise, due to the cross
product of the two relations involved, too many resulting tuples are returned.

TimeDB calculates the temporal intersection operation using the temporal difference. So, with
respect to relations containing duplicates, the semantics of the unitemporal intersection are that
the first argument of a set intersection operation determines how often duplicates appear in the
resulting relation. This differs from the semantics of set operations in SQL3 [SQL93]. SQL3
defines that intersecting two sets containing duplicates shall return the minimum of the number of
occurrences of a duplicate in the relations involved.

I These functions are beyond the SQL Standard, however they can be expressed using the CASE-expression available
in SQL-92 (see [MS93])

64 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

4.4.3.4 Temporal Selection Operation

The temporal selection operation actually is the same as the non-temporal selection. However,
it is extended with additional predicates for temporal comparison. As proposed in [SDJT93],
TimeDB supports the predicates = precedes, overlaps, meets and contains. In TimeDB, these
comparison operators are translated into their definitions (see table 2.2). They can be used both
for valid time and transaction time.

TimeDB also supports temporal comparison operators for durations of time periods and time
instants, following [SDJT93]. Additionally, functions begin and end are supported returning the
lower and the upper bound of a time interval.

4.4.3.5 Temporal Projection Operation

The temporal projection operation mainly corresponds to its non-temporal counterpart. The only
difference is whether or not the timestamp attributes are members of the projection list (the list
of columns appearing in the result) by default. This depends on the kind of query stated.

In the case of a (temporal) upward compatible query, no valid- or transaction-time attributes
are in the projection list, since they return a result with respect to the time instant now only. In the
case of a sequenced query, the timestamp attributes are members by default. A valid-time query
implicitly returns valid-time timestamps, a transaction-time query transaction-time timestamps,
and a bitemporal query both. In the case of a non-sequenced query, the temporal attributes are
treated as user-defined attributes and may or may not appear in the result, depending on whether
they appear in the projection list specified by the user. The valid- and transaction-time timestamps
of tuples in a relation R can be referenced by VALID(R) and TRANSACTION(R), respectively.

4.4.3.6 Temporal Cross Product Operation

The valid-time cross product combines tuples of two relations during their common valid-time
periods. Assume two valid-time relations Ry and Rs, having attributes

Ry = < A, As, .. A, vis #$, vie #$ >
Ro = < By, Ba, ..., By, vis_#8$, vie_#$ >

The valid-time cross product of R; and Rs, Ry XY Ra, can be translated into the SQL statement

SELECT A1, A2, ..., An, B1, B2, ..., Bm,
GREATEST(R1.vts_#$, R2.vts_#3) vts_#$,
LEAST(R1.vte_#$, R2.vte_#$) vte_#$
FROM R1, R2
WHERE GREATEST(R1.vts_#$, R2.vts_#3$) < LEAST(R1.vte_#$, R2.vte_#$)

4.4.4 Bitemporal Algebra Operations

So far, the implementation of the unitemporal algebra operations has been discussed. TimeDB
however also handles bitemporal queries. For these queries, special operations for set union, set
difference, set intersection and cross product need to be implemented. The temporal selection and
projection operations presented above are sufficient for bitemporal queries. A bitemporal query is
translated to standard SQL the same way as a unitemporal query. It uses, however, bitemporal
algebra operations instead.

Bitemporal timestamps can be depicted as areas in a coordinate system having two axes — valid
time and transaction time. For the following examples, two value-equivalent tuples are assumed
which are members of two different bitemporal relations Ry and Ry, having timestamps as shown
in figure 4.4. Rectangle 57 defines the timestamp of a tuple in relation Ry and rectangle Sy of a
tuple in Ro.

4.4. TRANSLATION OF TEMPORAL QUERIES TO STANDARD SQL STATEMENTS 65

Valid“Time So
1993 ------------/-
S1
19914----
1986 ----f---------
198414 - - - - .
1990 1993 1995 1997 Transaction Time

Figure 4.4: Bitemporal timestamps of two value-equivalent tuples

4.4.4.1 Bitemporal Set Union Operation

The bitemporal union operation U! of two union-compatible bitemporal relations Ry and Rs, having
attributes

Ry = < Ay, As, ..., Ay, vis #S$, vie #8, tts #3$, tte #$ >
Ry = < By, B, ..., By, vis_#$, vie #$, tts #3$, tte_#$ >

is the same as the non-temporal union, R; U’* Rs = R; U Rs.

Example 4.6 Assume that the bitemporal relation Ry contains the tuple

TRANSACTION | VALID Name | Dept
[1993 — 1997) [1986 — 1993) | John Sales

whereas relation Ry contains the tuple

TRANSACTION | VALID Name | Dept
[1990 — 1995) [1984 — 1991) | John Sales

The timestamp of the tuple in relation Ry thus corresponds to the area S and the timestamp of
the tuple wn relation Ry to the area Ss. The bitemporal set union returns a bitemporal relation
containing the two tuples. So, the query

VALID AND TRANSACTION
(SELECT * FROM R1
UNION
SELECT # FROM R2);

returns the bitemporal relation

TRANSACTION | VALID Name | Dept
[1993 — 1997) [1986 — 1993) | John Sales
[1990 — 1995) [1984 — 1991) | John Sales

As with the unitemporal set union operation, the bitemporal operation does not perform any
coalescing of overlapping time periods of value-equivalent tuples.

66 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

Valid Time
A
1993F--------------
19911----
1986 ----f---------
19841 - - - - 1
1990 1993 1995 1997 Transaction Time

Figure 4.5: Difference of two bitemporal timestamps

4.4.4.2 Bitemporal Set Difference Operation

Assume again two relations Ry and Rs containing two value-equivalent tuples having timestamps
as depicted in figure 4.4. When calculating the bitemporal difference of Ry minus Ry, the resulting
timestamp of the two tuples is the shaded area depicted in figure 4.5.

The resulting timestamp area may no longer be a rectangle. In the case depicted in figure 4.5,
TimeDB returns two value-equivalent tuples where the resulting timestamp of the bitemporal differ-
ence is given as a polygon. Depending on the sequence — VALID AND TRANSACTION or TRANSACTION
AND VALID — used in the bitemporal query, the resulting timestamp is set up differently.

Example 4.7 In TimeDB, the bitemporal difference Ry -'* Ry can be expressed in two different
ways. The query

VALID AND TRANSACTION
(SELECT * FROM R1
EXCEPT
SELECT # FROM R2);

returns the bitemporal relation

TRANSACTION | VALID Name | Dept
[1993 — 1995) [1991 — 1993) | John Sales
[1995 — 1997) [1986 — 1993) | John Sales

whereas the query

TRANSACTION AND VALID
(SELECT * FROM R1
EXCEPT
SELECT # FROM R2);

results in the following bitemporal relation:

VALID TRANSACTION | Name | Dept
[1986 — 1991) | [1995 — 1997) John Sales
[1991 — 1993) | [1993 — 1997) John Sales

4.4. TRANSLATION OF TEMPORAL QUERIES TO STANDARD SQL STATEMENTS 67

4.4.4.3 Bitemporal Set Intersection Operation

Bitemporal set intersection in TimeDB is implemented similarly to the unitemporal set intersection.
We again use the fact that set intersection can be expressed using set difference. The bitemporal
set intersection of the two relations Ry and Ra, Ry NY! Ry, can be written as

Ry eyt (Rl eyt Rz)

Figure 4.6 shows the resulting timestamp area if each relation contains tuples with bitemporal
timestamps as depicted in figure 4.4.

Valid Time
A
1993F--------------
19911----
1986 ----F---------
19841 - - - -
1990 1993 1995 1997 Transaction Time

Figure 4.6: Intersection of two bitemporal timestamps

Example 4.8 The bitemporal set intersection Ry N Ry can be written in TimeDB as

VALID AND TRANSACTION
(SELECT * FROM R1
INTERSECT
SELECT # FROM R2);

and returns the bitemporal relation

TRANSACTION | VALID Name | Dept
[1993 — 1995) [1986 — 1991) | John Sales

Using the flag TRANSACTION AND VALID results in the same relation.

4.4.4.4 Bitemporal Cross Product Operation

The bitemporal cross product of Ry and Rs, Ry x“% Re, can be translated into the following SQL
statement:

SELECT A1, A2, ..., An, B1, B2, ..., Bm,
GREATEST(R1.vts_#$, R2.vts_#3) vts_#$,
LEAST(R1.vte_#$, R2.vte_#$) vte_#$,
GREATEST(R1.tts_#$, R2.tts_#3$) tts_#$,
LEAST(R1.tte_#$, R2.tte_#$) tte_#$
FROM R1, R2
WHERE GREATEST(R1.vts_#$, R2.vts_#3$) < LEAST(R1.vte_#$, R2.vte_#$)
AND GREATEST(R1.tts_#3$, R2.tts_#3$) < LEAST(R1.tte_#$, R2.tte_#$)

68 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

The resulting timestamp for the two tuples in Ry and R, respectively, is again the intersection of
the two areas as depicted in figure 4.6.

Example 4.9 The bitemporal cross product Ry x¥! Ro can be written in TimeDB as

VALID AND TRANSACTION
(SELECT * FROM R1, R2);

and returns the bitemporal relation

TRANSACTION | VALID Name | Dept | Name | Dept
[1993 — 1995) [1986 — 1991) | John Sales | John Sales

Using the flag TRANSACTION AND VALID returns the same relation.

4.4.5 Derived Tables and Views

An important concept of ATSQL2 is the derived table. A derived table is a (temporal) query
expressions in the FROM-clause which is used instead of a table reference. Derived tables are useful,
for example, when two states of a temporal database need to be compared to each other with
respect to their time.

Example 4.10 On November 1, 1996, we execute the following upward compatible modification
statement on valid-time table Employees as given in example 4.2:

UPDATE Employees SET MgrID = 112 WHERE Name = ’George’;

Since table Employees is a valid-time table, the valid-time of the updated tuple will be [now <o)
due to the upward compatible semantics. This means, that the above update statement stores the
fact that from November 1, 1996 on, Paul 1s George’s manager.

VALID EmpID | Name | Salary | MgrID
[1996/10/21 — o0) 112 Paul 9100 111
[1996/10/21 — 1996/10/29) | 111 John | 8700 111
[1996/10/29 — o0) 111 John | 9300 111
[1996/10/21 — 1996/11/1) | 113 George | 8300 111
[1996/11/1 — o0) 113 George | 8300 112

Now, we would like to find the employee number of George’s manager prior to Paul:

NONSEQUENCED VALID
SELECT a2.MgrID
FROM (VALID
SELECT el.EmpID
FROM Employees el, Employees e2

WHERE el.Name = ’George’ AND
el.MgrID = e2.EmpID AND
e2.Name = ’Paul’) al,

Employees a2
WHERE VALID(a2) meets VALID(al);

This query returns the employee number 111 which belongs to John.

4.4. TRANSLATION OF TEMPORAL QUERIES TO STANDARD SQL STATEMENTS 69

The query in example 4.10 combines a non-sequenced query with a sequenced query. Due to
keyword VALID in the derived table, it is calculated using temporal semantics. Thus, alias al
actually stands for a valid-time relation, containing tuples with George’s employee number and
the valid-time intervals, during which Paul was his manager. The temporal comparison of table
a2 with the derived table a1l is done in the context of the NONSEQUENCED VALID time flag. Thus,
the valid times of both al and a2 are treated as user-defined attributes and operations have non-
temporal semantics, meaning that a non-temporal cross product of al and a2 is calculated. This
allows that their valid times can be used for comparison in the WHERE-clause.

The next example uses a temporal view instead of a derived table. A temporal view is a virtual
temporal table. For example, a valid-time view contains data timestamped with valid time.

Example 4.11 Instead of using a derived table as in example 4.10, we can create a temporal view
to find employee number of George’s manager prior to Paul:

CREATE VIEW ManagerView AS
VALID
SELECT el.EmpID
FROM Employees el, Employees e2

WHERE el.Name = ’George’ AND
el.MgrID = e2.EmpID AND
e2.Name = ’Paul’;

NONSEQUENCED VALID
SELECT a2.MgrID
FROM ManagerView al,
Employees a2
WHERE VALID(a2) meets VALID(al);

TimeDB materialises both derived tables and views referenced in a query before executing the
main part of the query. In the above examples 4.10 and 4.11, the derived table a1l and the view
ManagerView are materialised in an auxiliary table before the main query itself is evaluated. After
execution of the query, the materialised data i1s removed from the database.

4.4.6 Subqueries

SQL supports the concept of subqueries. Subqueries are query expressions which appear in the
body of another query. This is another method by which data of different relations can be related
with each other [MS93]. Subqueries are used, for example, together with predicates as EXISTS or
IN or their negated form. Correlated subqueries are subqueries which refer to attribute values of
tables of some outer query [Dat89).

Example 4.12 We would like to find those employees for whom employees can be found who earn
more. The following ATSQL2 query with a correlated subquery returns the desired result:

VALID
SELECT *
FROM Employees el
WHERE EXISTS (SELECT *
FROM Employees e2
WHERE el.Salary < e2.Salary);

If the above query is evaluated on table Employees given in example 4.10, the following valid-time
relation s returned:

70 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

VALID EmpID | Name | Salary | MgrID
[1996/10/21 — 1996/10/29) | 111 John | 8700 111
[1996/10/21 — 1996/11/1) | 113 George | 8300 111
[1996/11/1 — o0) 113 George | 8300 112
[1996/10/29 — o0) 112 Paul 9100 111

During the whole time period of his employment, George earns less than Paul. From 1996/10/21
to 1996/10/29, John earns less than Paul. After John’s salary raise on 1996/10/29, Paul earns
less than John.

When translating temporal queries into standard SQL queries, correlated subqueries need spe-
cial attention. To be able to do temporal calculations, correlated subqueries have to be translated
into corresponding set operations. For example, queries with EXISTS-, NOT EXISTS-, IN- or NOT
IN-subqueries can be translated into set difference operations of the outer query and the subquery.
TimeDB handles temporal queries having any number of subqueries conjuncted by AND and OR and
also subqueries containing other subqueries.

The query in example 4.12, having an EXISTS-subquery with correlation el.Salary < e2.Salary,
is translated into the algebra expression

Employees < (Employees < Temployees., .« (Tecl.salary<c2.salary (Employees,, x¥ Employees,,)))

where the projection list Employees.;.* stands for all attributes of table Employees, which are
VALID, EmpID, Name, Salary and MgrID. First, the temporal cross product of table Employees with
itself 1s calculated returning the combinations of a tuple of the outer table with a tuple of the inner
table together with their common validity time period. The subscripts el and e2 are aliases used
to distinguish the attributes of the outer and the inner table involved. Second, in the resulting
valid-time table, those tuples are selected for which el.salary < e2.salary is true. Third, all
attributes of the inner table are projected away and a table is returned containing those salaries
for which — during the resulting valid-time periods — higher salaries exist.

The semantics of the SQL query of example 4.12 demands that the result shall contain duplicates
as they appear in the outer Employees table. So with respect to duplicates, the same approach as
for temporal set intersection 1s used in TimeDB. The EXISTS subquery is translated into a sequence
of temporal difference operations.

In general, if the outer query references tables py,...,p, and the subquery tables q1, ..., qn,
EXISTS- or IN-subqueries can be translated into

(pl XU"'XUpm) 4 ((pl XU"'XUpm) 4 7TP1~*,~~~,Pm~*((p1 XU"'XUpm) Mgoinconch .- Mgoincondn q”))

We use M5 ;. 0,4, as shorthand for a temporal cross product of the tables involved and selection
operations testing for condition joincond;. Join condition joincond; contains — among others —
the correlations of table ¢; with one of the tables of the outer query. The projection list p;.*
stands for all attributes of table p;. The valid-time cross product of the tables of the outer query,
p1 XV ... XV pm, needs only to be calculated once, and copies of the result can be used.

A query with a NOT EXISTS- or NOT IN-subquery can be translated into an algebra expression
of the form

(pl X" XY pm) 4 7TP1~*w~me~*((p1 XY oxY pm) M‘ly{oincondl q1-.- M‘ly{oincondn q”)

where again p1, .., py, are the tables referenced in the outer query, q1, ..., ¢, the tables referenced in
the subquery, and joincond; contains the correlation of table ¢; with one of the tables of the outer

query.

Example 4.13 We would like to know the history of the highest salaries. We can find it using a
NOT-EXISTS subquery:

4.4. TRANSLATION OF TEMPORAL QUERIES TO STANDARD SQL STATEMENTS 71

VALID
SELECT *
FROM Employees el
WHERE NOT EXISTS (SELECT *
FROM Employees e2
WHERE el.Salary < e2.Salary);

This query returns the following tuples:

VALID Name | Salary | MgrID
[1996/10/21 — 1996/10/29) | Paul | 9100 111
[1996/10/29 — o0) John | 9300 111

This query is translated into the following algebra expression:

Employees < Memployees .« (Employees , X Employees,,)

v
el.salary<e2.salary

This algebra expression actually is very similar to the algebra expression given for the example
with the EXISTS-subquery. First, the valid-time cross product of table Employees with itself is
calculated. Next, those tuples are selected for which el.salary < e2.salary is true. For these
two operations, the shorthand notation Mg _.1,5 <co satary 15 used. Third, the resulting table shall
only contain those attribute values coming from the first argument of the temporal cross product
operation. The intermediate result now contains all those tuples for which an employee can be
found with a higher salary (with the corresponding valid-time periods). Temporally subtracting

these from valid-time table Employees returns the desired result.

4.4.7 Coalescing

Coalescing is a special operation which does not have a counterpart in the non-temporal relational
algebra. As described in chapter 2, coalescing is used to calculate maximal time intervals for value-
equivalent tuples. The following subsections describe how unitemporal coalescing is implemented
and discuss the different forms of bitemporal coalescing supported in TimeDB.

4.4.7.1 Unitemporal Coalescing

Coalescing a valid-time relation means to calculate maximal time intervals for tuples having iden-
tical non-timestamp attribute values. This operation could be written as a single standard SQL
statement, however its complexity would not lead to an efficient evaluation. TimeDB implements
unitemporal coalescing the same way as proposed in [BM92, Boh94].

The idea 1s to update the upper bound of the time interval of tuples for which value-equivalent
tuples exist with an overlapping time period having a higher upper bound. This is repeated until
there are no further updates. This loop is actually beyond standard SQL. Additional program
code is used to achieve 1t. Last, those tuples are deleted for which other value-equivalent tuples
exist which contain their whole valid-time period.

Assume a valid-time relation R; having attributes

Ry = < Ay, As, ..., Ay, vls_#$, vie #$ >.
The coalescing of this relation, Ry := coalesce(R1), is performed as follows:

*% REPEAT *x*
UPDATE R1 AO
SET (AO.vte_#$) = (SELECT MAX(A1.VTE_#$)
FROM R1 A1l
WHERE A0.CO = A1.CO AND
A0.C1 = A1.C1 AND

72 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

AO.VTE_#$ >= A1.VTS_#$ AND
AO.VTE_#$ < A1.VTE_#$)
WHERE EXISTS (SELECT
FROM R1 Al
WHERE A0.CO = A1.CO AND
A0.C1 = A1.C1 AND
AO.VTE_#$ >= A1.VTS_#$ AND
AO.VTE_#$ < A1.VTE_#$);
*% UNTIL no updates **

*

DELETE FROM R1 A0
WHERE EXISTS (SELECT
FROM R1 Al
WHERE A0.CO = A1.CO AND
A0.C1 = A1.C1 AND
A1.VTS_#$ < AO.VTS_#$ AND
A1.VTE_#$ = AO.VTE_#$);

*

This algorithm for coalescing modifies the argument table R1. As already mentioned for the
valid-time set difference operation, in the case that R1 1s a user-defined table, it first needs to be
copied.

In ATSQL2, the keyword (PERIOD) is used to denote that a set of tuples shall be coalesced.
This keyword can appear after any reference to a (derived) table in the FROM-clause or at the end
of a temporal ATSQL2 query.

Example 4.14 Looking at table Employees, we see that due to the update of John’s salary, there
are two tuples contained in this table with data concerning him:

VALID EmpID | Name | Salary | MgrID
[1996/10/21 — o0) 112 Paul 9100 111
[1996/10/21 — 1996/10/29) | 111 John | 8700 111
[1996/10/29 — o0) 111 John | 9300 111
[1996/10/21 — 1996/11/1) | 113 George | 8300 111
[1996/11/1 — o0) 113 George | 8300 112

We would like to know the mazimal time period during which data is stored about John in table
Employees. In order to get value-equivalent tuples for employee John, we first have to project away
the salary attribute. Then, we coalesce the remainder of this table:

VALID
(SELECT EmpID, Name, MgrID
FROM Employees
WHERE Name = ’John’) (PERIOD);

This results in the following table:

VALID EmpID | Name | MgrID
[1996/10/21 — oc) | 111 John | 111

In example 4.14, the result of the projection- and selection-operation on table Employees is
first materialised in an auxiliary table. On this intermediate result, coalescing is performed.

4.4.7.2 Bitemporal Coalescing

Bitemporal relations can be coalesced in two different ways. Due to the two time dimensions,
maximal time intervals can be calculated either with respect to valid-time first and then coalesce
the result with respect to transaction-time, or vice versa.

4.4. TRANSLATION OF TEMPORAL QUERIES TO STANDARD SQL STATEMENTS 73

Example 4.15 Figure 4.4 shows two bitemporal elements of two value-equivalent tuples. Assume
that these bitemporal timestamps belong to the two value-equivalent tuples given in the following
table Employees:

VALID TRANSACTION | Name | Dept
[1984 — 1991) | [1990 — 1995) John Sales
[1986 — 1993) | [1993 — 1997) John Sales

Due to the overlapping of the two areas, different results of bitemporal coalescing are possible.
Figure 4.7 shows the two solutions which can be calculated in TimeDB. The figure on the left
hand side first shows the resulting time periods when calculating maximal time intervals first with
respect to valid time and then with respect to transaction time. Calculating first maximal time
intervals with respect to transaction time and then with respect to valid time leads to a result as
shown in the figure on the right. In TimeDB, the desired result is specified using either the flag
VALID AND TRANSACTION or TRANSACTION AND VALID.

Valid Time Valid Time
A A

1993 1993

1991 1991{- - - -

1986 1986

1984 1984] - ---

1990 1993 1995 1997 Transaction Time 1990 1993 1995 1997 Transaction Time

Figure 4.7: Two different results of bitemporal coalescing

Example 4.16 The bitemporal query

VALID AND TRANSACTION
(SELECT * FROM Employees) (PERIOD);

returns the following table:

TRANSACTION | VALID Name | Dept
[1990 — 1993) [1984 — 1991) | John Sales
[1993 — 1995) [1984 — 1993) | John Sales
[1995 — 1997) [1986 — 1993) | John Sales

This corresponds to the bitemporal timestamps depicted in the left picture of figure 4.7. The bitem-
poral query

TRANSACTION AND VALID
(SELECT * FROM Employees) (PERIOD);

first coalesces the transaction-time periods and then the valid-time periods which results in the
following bitemporal relation:

74 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

VALID TRANSACTION | Name | Dept
[1984 — 1986) | [1990 — 1995) John Sales
[1986 — 1991) | [1990 — 1997) John Sales
[1991 — 1993) | [1993 — 1997) John Sales

4.4.8 An extended Example

The previous sections explained how the basic temporal operations are translated into standard
SQL. Additionally, it was shown how TimeDB handles derived tables, views and subqueries. In
this section, an extended example is given focusing on the different steps of translating a complex
query into standard SQL.

Example 4.17 We would like to find the history of employees working for manager John having
the highest and the history of employees working for manager Paul having the lowest salaries :

VALID
(SELECT el.Name, el.Salary
FROM Employees el, Employees e2
WHERE el1.MgrID = e2.EmpID AND
e2.Name = ’John’ AND
NOT EXISTS (SELECT #
FROM Employees e3
WHERE el.Salary < e3.Salary)
UNION
SELECT el.Name, el.Salary
FROM Employees el, Employees e2
WHERE el1.MgrID = e2.EmpID AND
e2.Name = ’Paul’ AND
NOT EXISTS (SELECT #
FROM Employees e3
WHERE el.Salary > e3.Salary)) (PERIOD);

The result of this query is the following table:

VALID Name | Salary
[1996/10/21 — 1996/10/29) | Paul 9100
[1996/10/29 — o0) John | 9300
[1996/11/1 — o0) George | 8300

TimeDB first evaluates the two main SELECT-FROM-WHERE-blocks separately. Since the keyword
VALID embraces the whole query, these are then combined using the valid-time set operation UNION.
The final result has to be coalesced due to the keyword (PERIOD) at the end of the query.

Due to the subqueries, each of the two SELECT-FROM-WHERE-blocks is translated into a valid-time
set difference as described in subsection 4.4.6. Each of these set differences has two auxiliary tables
as arguments, the first argument is the main query without any (correlated) subquery, the second
argument is the result of joining the tables referenced in the FROM-clause of the upper query with
the tables in the subquery, which allows the correlation to be evaluated. So the algebra expression
of the query in example 4.17 looks like

coalesce(m[vts_#$, vte #§, Name, Salary](auxl & aux2) U
nlvts_#3, vie #$, Name, Salary](aux3 & aux4))

TimeDB evaluates this algebra expression on the commercial DBMS in several steps. First, the
two auxiliary tables aux1 and aux2 are created. Table aux1 contains the result of evaluating the
first argument of the union-operation without the subquery:

4.4. TRANSLATION OF TEMPORAL QUERIES TO STANDARD SQL STATEMENTS 75

CREATE TABLE auxl(vts_#$, vte_#$,
ct$_0, c#t$_1, c#$_2, c#$_3, c#$_4, ci$_5,
c#$_6, c#$_7, c#$_8, c#$_9, c#$_10, c#$_11)
AS
SELECT GREATEST (el.vts_#$, e2.vts_#$) vts_#$, LEAST(el.vte_#$, e2.vte_1#3$) vte_tt$,
el.vts_#$, el.vte_#$, el.EmpID, el.Name, el.Salary, el.MgrID,
e2.vts_#$, e2.vte_#$, e2.EmpID, e2.Name, e2.Salary, e2.MgrID
FROM Employees el, Employees e2
WHERE GREATEST(el.vts_#$, e2.vts_#$) < LEAST(el.vte_#$, e2.vte_#$) AND
el.MgrID = e2.EmpID AND
e2.Name = ’John’;

Next, table aux2 is created containing the result of joining the tables of the outer query with
the tables in the subquery using the correlation.

CREATE TABLE aux2(vts_#$, vte_#$,
ct$_0, c#t$_1, cit$_2, ci#$_3, c#$_4, c#$_5,
c#$_6, c#$_7, c#$_8, c#$_9, c#$_10, c#$_11)
AS
SELECT DISTINCT GREATEST(el.vts_#$, e2.vts_#$, e3.vts_#$) vts_#$,
LEAST (el.vte_#$, e2.vte_1#t$, e3.vte_#$) vte_#$,
el.vts_#$, el.vte_#$, el.EmpID, el.Name, el.Salary, el.MgrID,
e2.vts_#$, e2.vte_#$, e2.EmpID, e2.Name, e2.S5alary, e2.MgrID
FROM Employees el, Employees e2, Employees e3
WHERE GREATEST(el.vts_#$, e2.vts_#$, e3.vts_#$) < LEAST(el.vte_#3$, e2.vte_#$, e3.vte_1t$)
AND el.Salary < e3.8alary;

Now it is possible to calculate the temporal difference of tables aux1 and aux2,

v

auxl := auxl -Y aux2,

storing the result in table aux1. Next, the projection of the result to the timestamp attributes and
the attributes Name and Salary needs to be done. The result of this projection operation is stored
in another auxiliary table aux5,

auxb := wlvts_#$, vte#t$, c#$.3, c#$.4](aux1).

Table aux5 is used as a first argument to the union-operation.

The second argument table is calculated accordingly. Two auxiliary tables aux3 and aux4 are
created containing the result of the outer query and the result of joining the tables of the outer
query with the tables in the subquery using the correlation.

CREATE TABLE aux3(vts_#$, vte_#$,
ct$_0, c#t$_1, cit$_2, ci#$_3, c#$_4, c#$_5,
c#$_6, c#$_7, c#$_8, c#$_9, c#$_10, c#$_11)
AS
SELECT GREATEST (el.vts_#$, e2.vts_#$) vts_#$,
LEAST(el.vte_#$, e2.vte_#3) vte_#$,
el.vts_#$, el.vte_#$, el.EmpID, el.Name, el.Salary, el.MgrID,
e2.vts_#$, e2.vte_#$, e2.EmpID, e2.Name, e2.S5alary, e2.MgrID
FROM Employees el, Employees e2
WHERE GREATEST(el.vts_#$, e2.vts_#$) < LEAST(el.vte_#$, e2.vte_#$) AND
el.MgrID = e2.EmpID AND
e2.Name = ’Paul’;

CREATE TABLE aux4(vts_#$, vte_#$,
c#$_0, c#$_1, c#$_2, c#$_3, c#$_4, c#3$_5,
ct$_6, c#t$_7, cit$_8, ci#$_9, c#$_10, c#t$_11)
AS

76 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

SELECT DISTINCT GREATEST(el.vts_#3$, e2.vts_#$, e3.vts_#$) vts_#3$,
LEAST (el.vte_#$, e2.vte_1#t$, e3.vte_#$) vte_#$,
el.vts_#$,el.vte_#$, el.EmpID, el.Name, el.Salary, el.MgrID,
e2.vts_#$,e2.vte_#$, e2.EmpID, e2.Name, e2.Salary, e2.MgrID
FROM Employees el, Employees e2, Employees e3
WHERE GREATEST(el.vts_#$, e2.vts_#$, e3.vts_#$) < LEAST(el.vte_#3$, e2.vte_#$, e3.vte_1t$)
AND el.Salary > e3.8alary;

TimeDB calculates the temporal difference of aux3 and aux4, aux3 := aux3 -Y aux4 and
returns the timestamp attributes plus attributes Name and Salary. This result is stored again in
an auxiliary table aux6, aux6 := wlvts#$, vte#$, c#$.3, c#$.4](aux3).

Both argument tables for the temporal set union are now ready. TimeDB calculates the valid-
time union of tables aux5 and aux6 and stores the result in table aux5, aux5 := aux5 U' aux8.
Last, coalescing is performed on table aux5 and the result is presented to the user.

4.5 Temporal Constraint Checking

Besides the standard non-temporal constraints, TimeDB supports valid-time assertions and valid-
time table- and column-constraints. Valid-time assertions are, according to standard SQL, defined
using the CREATE ASSERTION statement. ATSQL2 additionally allows the use of the keyword
VALID to denote that the assertion should be checked using temporal semantics. Similarly, valid-
time column-constraints such as referential integrity and CHECK constraints may be declared as
temporal in ATSQL2 by writing VALID in front of the column-constraint.

TimeDB translates these temporal assertions and constraints into temporal queries and stores
them in the database. To werify temporal constraints, TimeDB supports a constraint checker
which, at commit time, fetches the constraint queries from the database, evaluates them and
decides according to their results whether or not any of the constraints are violated. With this
approach, the translation algorithm for queries can be reused to evaluate constraints. Of course,
only those constraints need to be checked which are related to modified tables. So only the relevant
constraint queries are evaluated at commit time.

Example 4.18 The company’s policy is that all employees have a minimal salary of 8500. To
make sure that this is always guaranteed, we add a column-constraint to table Employees:

ALTER TABLE Employees ADD VALID CHECK (salary >= 8500);

This valid-time column-constraint is translated into the following temporal query:

VALID
SELECT *
FROM Employees
WHERE NOT (Salary >= 8500);

This query 1s saved in a meta-table containing all column-constraints. At commit time, the con-
straint checker gets the relevant queries in the meta-tables and executes them. As soon as the
query returns a resulting tuple, the column-constraint specified in example 4.18 is violated. In
this case, the constraint checker writes an error message out to the screen, causes the DBMS to
perform a rollback and quits checking constraints. Assertions are handled similarly.

Example 4.19 We want to add an assertion to check that no employee ever earns more than his
manager. In ATSQL2, this assertion can be specified as follows:

4.6. THE TIMEDB DBMS 77

CREATE ASSERTION Min_Salary
VALID CHECK (
NOT EXISTS (SELECT #
FROM Employees el, Employees e2
WHERE el1.MgrID = e2.EmpID AND
el.Salary > e2.Salary));

The assertion is translated into the temporal query

VALID
SELECT *
FROM Employees el, Employees e2
WHERE el1.MgrID = e2.EmpID AND
el.Salary > e2.S8alary;

The temporal query is saved together with the quantifier (specifying that the condition NOT
EXISTS was chosen) in a meta-table containing all assertions. At commit time, the constraint
checker also gets the relevant queries from this meta-table and evaluates them. Depending on
the type denoting whether EXISTS or NOT EXISTS was chosen as a quantifier, the queries have to
return at least one tuple or no tuple, respectively. If a constraint is violated, the constraint checker
writes an error message to the screen, causes the DBMS to do a rollback and quits.

4.6 The TimeDB DBMS

This section illustrates the general architecture of the DBMS TimeDB [Ste95], shows the steps of
the rewriting algorithm, gives a short overview on the additional meta-tables used and describes
the query interface.

4.6.1 Architecture of the TimeDB DBMS

The architecture of the DBMS TimeDB is shown in figure 4.8. Since suppliers of commercial DBMS
do not make the source code of their DBMS available, TimeDB had to be implemented using a
layered approach. It is built as a front-end to the commercial DBMS Oracle. The disadvantage of
such an approach is the limitation in performance.

TimeDB was written in Prolog. The communication between the front-end and the DBMS
Oracle was implemented using the C interfaces of both Prolog [Swe93] and Oracle [SD94]. Special
Prolog predicates were implemented which use the C interface of Prolog to execute SQL state-
ments on the DBMS. Previously, this architecture has been successfully used for deductive DBMS
prototypes such as ProQuel [Bur92], the temporal deductive DBMS ChronoLog [B6h94] and the
constraint DBMS DeCoR [Gro96].

4.6.2 Steps of the Rewriting Algorithm

Figure 4.8 shows the modules and the data paths of TimeDB. The modules parser, translator and
evaluator call operations implemented in modules scanner, checker and coalescing, respectively.

The scanner reads an ATSQL2 statement, generates a token list and passes it to the parser.
The parser then checks if the statement 1s a legal ATSQL?2 statement. In case of a syntax error, an
error message is displayed and the translation is stopped. Otherwise a parse tree is generated and
passed to the translator. The parse tree reflects the ATSQL2 statement in a symbolic notation
which is more convenient to handle in Prolog than strings.

The translator checks if all tables and attributes referenced in the statement actually exist. In
the case of a temporal query, it checks if the tables are of the right kind (valid-time, transaction-time

78 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

Front-End
Scanner Checker Coalescing

IR v

Parse =——"——u Algebra —'— Result
Parser Tree > Translator | Expression Evaluator | Query Display
—_— —

Standard
Meta Data SQL Result
Statements

Commercial Relational Database Management System

Back-End

Figure 4.8: Architecture of TimeDB

or bitemporal tables). Additionally, other checks — for example, for type and union compatibility —
are done wherever needed. The module checker provides operations for these checks. Again, if any
error is detected, an error message is displayed and translation is stopped. Otherwise, the parse
tree 1s translated into an algebraic expression which is then sent to the evaluator.

The evaluator executes the algebra expression on the commercial relational DBMS, using the
algorithms presented in section 4.4. As mentioned previously, intermediate results are stored in
auxiliary tables when needed, which are automatically created and dropped by the TimeDB system.
The evaluator then sends a system-generated query to the display module, which is used to fetch
the final result from the database. These tuples are presented in a tabular form on the screen.

4.6.3 Meta-Tables

Due to the new kinds of tables, views, constraints and assertions, TimeDB stores its own meta-
data. As already seen before, queries to check temporal table- and column-constraints and temporal
assertions are stored in separate meta-tables. This subsection gives a short description of the new
meta-tables introduced in TimeDB. These meta-tables are

e table_types

e views

e table column _constraints
e refint

e assertions

All meta-tables in TimeDB are snapshot relations. The timestamping of meta-data and its
influences on the model have not been considered in TimeDB.

Temporal queries can only be evaluated on temporal tables. To be able to quickly find out the
type of a table (snapshot, valid-time, transaction-time or bitemporal table), this information is
stored explicitly in meta-table table_types. The parser, for example, accesses this data to check
whether the tables referenced in a temporal query are of the right kind with respect to time.

4.7. SUMMARY 79

Temporal views are stored in meta-table views. The meta-data of a temporal view contains
the name of the view and the query calculating the view.

There are three additional meta-tables for constraints, one for table- and column-constraints,
one for referential integrity constraints and one for assertions. The table column_constraints
meta-table has two attributes, namely table name and query. Since all table- and column-
constraints are stored in the same meta-table, TimeDB uses the table name to access the con-
straints of a single table. Referential integrity constraints are stored in meta-table refint. To
distinguish between non-temporal and temporal referential integrity constraints, TimeDB stores
table-name and name of the referencing column(s) and table-name and name of the referenced col-
umn(s) together with the information as to whether the constraint has to be evaluated temporally
or not. Temporal assertions are stored in meta-table assertions. Each assertion has a name and
a quantifier specifying if the assertion verifies the existence or non-existence of particular values.
Additionally, as seen before, the assertion itself is translated into a (temporal) query which is used
to look for these particular values. Meta-table assertions thus contains the three attributes name,
type and query.

4.6.4 User Interface of TimeDB

TimeDB supports a command-oriented user interface, which means that, after starting TimeDB,
a prompt appears where commands can be entered. After opening a database, the system is ready
to execute statements written in ATSQL2. In order to see the standard SQL commands generated
by TimeDB, the system can be set to a trace mode.

{TimeDB 1.07, November 1, 1996}
{Andreas Steiner, ETH Zuerich, Switzerland}

ATSQL2> open ’EmployeeDB’;

Database opened

ATSQL2> VALID SELECT * FROM Employees;

VALID empid name salary mgrid
[1996/10/21-forever) 112 Paul 9100 111
[1996/10/21-1996/10/29) 111 John 8700 111
[1996/10/29-forever) 111 John 9300 111
[1996/10/21-1996/11) 113 George 8300 111
[1996/11-forever) 113 George 8300 112

ATSQL2> trace;

4.7 Summary

This chapter has presented how a bitemporal relational DBMS can be built as a front-end to a
commercial non-temporal relational DBMS, translating temporal statements into standard SQL
statements. The query translation approach in TimeDB is general in the sense that it can be
used for other temporal query languages than ATSQL2. ATSQL2 covers all aspects of a language
for DBMS — query language, data definition language, data modification language and constraint
specification language.

80 CHAPTER 4. A TEMPORAL RELATIONAL DBMS : TIMEDB

This approach of building a temporal DBMS is what was introduced in chapter 1 as the ez-
tenston approach with respect to the data structures. ATSQL2 assumes special attributes which
store the timestamps, and TimeDB implements them using two attributes for a time interval. This
means that in order to store the history of values, the schemas of the non-temporal relations are ex-
tended. ATSQL2 however uses the generalisation approach with respect to query and modification
language and the constraints. Fach of them is generalised into a temporal form. For example, each
algebra operation 1s generalised into a temporal operation, a requirement stated in the definition
of temporal completeness.

TimeDB can be used not only to demonstrate the power of ATSQL2, but also to implement
and test different query optimisation strategies. An early version of TimeDB supported a semantic
query optimiser which used temporal conditions in selection operations to derive new conditions
which helped to restrict the amount of data handled during query evaluation [Pul95]. Tt is possible
to substitute the implementations of algebra operations in TimeDB with more efficient ones, or
add special indexing techniques for faster query evaluation. TimeDB can also be used to compile
temporal queries into standard SQL queries which then can be added to application programs
running on commercial relational DBMS.

TimeDB 1s available as public domain software. Several universities use 1t to introduce students
to the area of temporal databases. Other ones are currently developing extensions for TimeDB
which add indexing techniques for temporal data.

For better performance, a commercial temporal relational DBMS should incorporate the tem-
poral algebra operations and the temporal constraint checking mechanisms directly. TimeDB is
used to demonstrate the functional power of temporal DBMS, to supply other researchers with an
implementation they can extend with their own ideas and to give a platform for discussion.

Chapter 5

A Temporal Object Data Model :
TOM

So far, all the temporal data models introduced in this thesis are based on the schema extension
approach. Chapter 3 has introduced several of these proposals which all extend the schemas or
types to timestamp data. With respect to query languages, most of these proposals add special
operations to the query language, for example, to select historical data or to support temporal joins.
As discussed in chapter 4, ATSQL2 goes a step further. It generalises the query and modification
language and the constraints into temporal ones. This chapter introduces a new temporal object
data model which is not based on the extension approach but rather generalises all concepts of an
object data model into temporal ones.

The first section of this chapter summarises the deficiencies of the extension approach with
respect to TimeDB and describes the ideas behind generalising the object data model OM into the
temporal object data model TOM. The second section recalls the main features of the OM model
in terms of a simple example application used throughout this chapter. Next, the basic constructs
of the temporal object data model TOM are presented in terms of temporal objects, roles and
associations. Then, the temporal generalisation of classification and association constraints are
discussed. Finally, the temporal algebra and query language are presented. Additionally, examples
of queries, data definition and data modification statements are given which can be run in the
prototype DBMS TOMS. TOMS (Temporal Object Model System) is an implementation of the
TOM data model.

5.1 Generalising an Object Data Model

ATSQL2 is not generic. One of the strengths of the relational data model is that it is generic in that
it does not assume anything about the underlying type system. ATSQLZ2, though, assumes special
attributes which store the time information, and its temporal algebra operations and constraints
access them. Additionally, as most other proposals, ATSQL2 suffers from the vertical temporal
anomaly. The history of a real world entity is split up into several tuples. In order to find maximal
time periods, the user has to apply the coalescing operation.

ATQSL2 is not truly orthogonal. For example, the timestamping of meta-data and its influences
on the data model and language have not been considered. It can be useful, however, to store at
least the transaction-time of relations, for example. Since relations are created and dropped —
which, on a different level, corresponds to an insert and delete — users might want to know when
relations were stored in a database. Storing the transaction time of relations means that operations
also have to verify whether or not relations exist in the database states relevant for the operation.

This chapter introduces a new temporal object data model which overcomes these deficiencies.
The non-temporal generic OM model [Nor92, Nor93] is generalised into the temporal object data

81

82 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

model TOM [SN97¢, SN97a]. This means that all aspects of the model — constructs, operations
and constraints — have temporal generalisations. Further, the temporal dimension applies not only
to data but also to meta-data.

To achieve this, a new form of object timestamping is introduced. Instead of adding validity
time periods to objects in form of special attributes, denoting when a specific state of an object
was valid (or stored, respectively), the notion of temporal object identifiers is introduced in TOM
which timestamp objects with their overall time period of existence. This approach does not make
any assumptions about the underlying type system. Thus, TOM is a generic temporal object data
model. An object then can be viewed through the different roles it was, is or will be playing.
Depending on the role through which an object i1s viewed, only that part of the lifespan of the
object is visible during which the object took this role. Additionally, during the objects visibility
in a role, the state of the object may vary, yielding the history of the attribute values. Attribute
value histories, however, have to be provided for on the type system level.

Since collections are also objects, the approach of temporal object identifiers leads naturally
to a representation of the lifespans of both objects and object roles. Further, associations —
including the membership associations between objects and the collections to which they belong —
are timestamped, allowing both object role histories and association histories to be modeled.

For the operational part of the model, a similar approach to that proposed in ATSQL2 is
used. TOM supports a full temporal algebra, a temporal query language and temporal constraints.
Additionally, meta-data can have temporal properties allowing the modeling of role, association and
constraint lifespans. The collection algebra of OM was generalised into a temporal algebra using
as guidelines the requirements specified in the definition of temporal completeness. Additionally,
the notions of upward and temporal upward compatibility were also reused.

5.2 The Non-Temporal Object Data Model OM

As we have already mentioned in chapter 1, the OM data model [Nor92, Nor93] allows the speci-
fication of semantic groupings of objects and their interrelationships and thus deals with issues of
classification and associations between objects at the same level of abstraction. The characteristics
of objects in terms of interface and implementation would be specified by the type system associ-
ated with a particular DBMS in which the model is used to support object data management. This
separation of typing from classification is beneficial, not only in terms of the universality of the
model, but also in distinguishing issues of representation from those of data semantics. Further,
it allows an Entity-Relationship style of conceptual modeling to be combined with the power and
flexibility of object-oriented systems.

The basic construct of the OM model is the collection in that both objects and relationships are
classified into collections of a given member type. Unary collections are those which have unary
values as elements and represent object roles. Binary collections are those which have pair values
as elements and represent relationships between entities. Relationships are actually represented by
associations. An association consists of a binary collection together with constraints that specify
the roles of objects that may participate in the relationship and the corresponding cardinalities.
A collection is itself an object which provides the capability to have collections of collections and
SO on.

Collections are grouped into classification structures each of which describes related object
roles in terms of a generalisation /specialisation graph. This is illustrated by means of the example
schema for a property leasing company shown in figure 5.1.

Figure 5.1 shows four classification structures. The classification structure on the right rep-
resents real estate properties and consists of the collection Properties and its subcollections
Residences, Offices, Rented, Available and Renovating. Recall that shaded boxes are used
to denote collections with the name of the collection in the unshaded region and the type of the
member values specified in the shaded region.

Subcollections Residences and 0ffices are constrained to be disjoint meaning that, at any
point in time, no property can be categorised for use as both a residence and an office. Subcollec-

5.2. THE NON-TEMPORAL OBJECT DATA MODEL OM 83

Clients

disjoint
Residences
1]
L omns 3 Properties
Offices

owner

Owners

partition

[1:4] [1:1]
@ Rented Available Renovating

Figure 5.1: An example OM schema diagram

tions Rented, Available and Renovating form a partition in that they are pairwise disjoint and
form a cover of Properties in that, at any point in time, every property must have exactly one
of these three roles.

A second classification structure represents clients and their roles. Collection Clients has
subcollections Owners and Tenants. The member type tenant of Tenants is a subtype of the
member type client of Clients. Likewise, owner is also a subtype of client. It is possible that a
client may be both a tenant and an owner and hence that a client object belongs to both Owners
and Tenants.

The third and fourth classification structures consist of the single associations Owns and Rents,
respectively. Associations are represented by oval-shaped boxes; together with links to the collec-
tions related by the association and their respective cardinality constraints. In order to specify
operations over associations, it is necessary to specify a direction of such a relationship. For exam-
ple, Owns would actually be represented by a collection of pairs of object values such that the first
elements of the pairs belong to Owners and the second elements belong to Properties. Collection
Owners is referred to as the source collection and Properties as the target collection of Ouns.

OM supports object evolution in that objects may change their roles over the course of time
[NSWWO96]. Such forms of evolution require changes in collection membership and this in turn
may involve changes in the type of an object which is called object metamorphosis. For example,
if a tenant object becomes an owner object, then the object must gain additional owner proper-
ties. OM supports object metamorphosis through dress and strip operations. Further, the model
includes mechanisms to control object evolution. For example, objects can only migrate within a
classification structure, thereby preventing absurd evolutions such as an object in Tenants becom-
ing an object in Properties.

The operational model of OM is based on a collection algebra. A list of operations supported in
OM is given in table 5.1. The algebra includes operations such as wunion, intersection, difference,
cross product, selection, map, flatten and reduce as well as special operations over binary collections
such as domain, range, inverse, compose and closure. In the remainder of this section, a short
overview of these algebra operations is given. Definitions of most of their temporal equivalents
together with example queries are given in section 5.5.

The algebra operations are given specifying the input arguments and the results along with their
types. Collections which list two types, for example coll[(T'ype1, T'ypes)], are binary collections,
containing objects of the form <oid;, oids >, where oid; refers to an object of type Type; and
oids to an object of type Types.

For set operations, [Nor93, Nor92] use the notion of least common supertype and greatest com-
mon subtype to determine the member type of the resulting collections. The common super-

84 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

Algebra Operation | Signature |

Union U : (eoll[Typer], coll[Typea]) — coll[Typer U Types)
Intersection N : (coll[Typer], coll[Typesa]) — coll[Typer M Types)
Difference < (coll[Typer], coll[Typea]) — coll[Typeq]

Cross Product x @ (coll[Typer], coll[Types]) — coll[(Typeyr, Types)]
Selection o : (coll[Type], Type — boolean) — coll[Type]

Map map : (coll[Type1], Typer — Typea) — coll[Types)

Flatten flatten : coll[coll[Type]] — coll[Type]

Reduce reduce : (coll[Type1], (Typer, Type) = Type, Type) — Type
Domain domain : coll[(Type1, Typea)] — coll[Type:]

Range range : coll[(Type1, Type2)] — coll[Types]

Inverse inv : coll[(T'yper, Types)] —= coll[(Types, Typer)]

Compose o : (coll[(Typer, Typea)], coll[(Types, Typea)]) — coll[(Typer, Types)]
Closure closure : coll[(Typer, Typea)] — coll[(Typer, Types)]

Table 5.1: Algebra operations supported in the OM model

type (upper bound) of two types Type; and Type; is defined to be any type Types such that
Type; <; Typer, and Type; <; Typey, where <; denotes a subtype relationship. If T'ypey, is a com-
mon supertype of T'ype; and T'ype;, such that for any other common supertype T'ype; of T'ype; and
Type;, Typer <¢ Type;, then Typey is the least common supertype (least upper bound) of Type;
and Type; which is written as T'yper, = Type; U Type;. Similarly, the greatest common subtype
(greatest lower bound) of Type; and Type; is defined as a common subtype Typey such that for
any other common subtype Type;, Type; <; Typey, which is written as T'yper = T'ype; M Type;.
It can be easily shown that both T'ype; UType; and T'ype; M Type; are unique.

The unton of two collections thus returns a collection whose type is the least common supertype
of the two collections involved. The resulting collection contains all the elements belonging to one
(or both) of the argument collections. The intersection of two collections, on the other hand,
returns a collection whose type is the greatest common subtype of the two collections involved,
containing the objects which are members of both argument collections. The type of the resulting
collection of the difference of two collections corresponds to the type of the first argument in the
operation. The resulting collection contains exactly those objects in the first argument collection
which are not also members of the second one.

The eross product of two collections returns a binary collection coll[(Type;, Types)] containing
all combinations of an object of the first collection with an object of the second one. The selection
operation has as arguments a collection and a function which selects objects from the collection. The
result is a subset of the argument collection. The map operator applies a function with a signature
Type; — Types to each object in the argument collection and returns a collection of objects of type
Types. The flatten operator takes a collection of collections of the same member type and flattens
them to a collection of type T'ype. The reduce operator allows the execution of aggregate functions
over a collection of values. It has three arguments — the collection coll[T'ype;] over which the
aggregate function is executed, the aggregate function itself with a signature (T'ype1, Type) — Type
and an 1nitial value of type T'ype.

The OM model also supports special operations over binary collections. Some of them are
listed in the second part of table 5.1. The domain operation takes a binary collection and forms
a collection of all the objects that appear as the first element of a pair of objects <oidi, oids >
belonging to the binary collection, whereas the range operation returns a collection containing the
second elements of such pairs. The inverse operation swaps the first and the second element of the
pairs contained in the argument binary collection and returns them in a new binary collection. The
compose operation combines those binary objects of the two argument collections where the second
object in the first binary object <oidi, oids > appears as first object of the second binary object,

5.3. GENERALISED TEMPORAL DATA STRUCTURES 85

<o0idsy, oidg >. The resulting collection contains binary objects, for example, <oid;, oids >. The
closure of a binary collection is the reflexive transitive closure of a relationship represented by the
binary collection.

5.3 Generalised Temporal Data Structures

This section describes how the data structures of the OM model were generalised into temporal
ones. Additionally, the notions of temporal objects, temporal collections, temporal object evolution
and temporal associations are defined. First, the fundamental ideas of object lifespans and visibility
are introduced.

5.3.1 Object Lifespans and Visibility

The temporal object data model TOM is based on object timestamping. However, in contrast to
the proposals discussed in chapter 3, TOM does not extend the types but rather extends the object
tdentifiers with a timestamp to give temporal object identifiers of the form

toid ;=< oid;1ls >

where o0id is an object identifier and 1s is a timestamp referred to as the lifespan of an object. It
expresses, for example, when an object was valid (existent) in the real world. Thus, not the values
of an object are timestamped but the object itself with its overall time of existence. The history of
its values is kept track of separately. This means that it is not necessary to calculate the union of
all timestamps of values of an object in order to establish the time period during which the object
existed. Figure 5.2 shows the lifespan of an object. It may exist during several non-overlapping time
periods. For example, assume we want to store information about the history of different countries.
Poland existed as an independent country during the time periods [1025 <1795), [1918 <1939)
and again since 1945, so its lifespan contains three non-overlapping time intervals.

lifespan
of object

» Time

Figure 5.2: Lifespan of an object in TOM

Timestamps may also be associated with relationships between objects which are represented
by member pairs of binary collections. In this case, each pair of object identifiers (oid;, 0ida) is
tagged with a timestamp to give elements of the form

< (0idy, 0ids);1s >

where 1s is a lifespan as before.

Since object roles are represented by collections which are themselves objects, collections may
also be timestamped. As a result, the fact that roles also exist for limited lifespans can be modeled
and, further, that they may appear and disappear with respect to the current state of an application
domain. For example, assume that the property leasing company whose schema is given in figure 5.1
initially only managed properties owned by its parent company. Later, it decided to generalise and
also lease properties owned by others. After a while, it ceased to manage other owner’s properties
while the general leasing market declined. When the market picked up a few years later, it resumed
leasing of other people’s properties. This can be modeled through the lifespan of the Owners

86 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

collection. Similarly, associations which represent relationship roles between objects may also be
timestamped.

The next stage to consider is how to model the times at which a particular entity has a particular
role, for example, that an object is a member of a collection. An object may be in several collections
at one time and may migrate between collections. Looking at the example schema in figure 5.1, a
tenant is a member of collection Tenants. This means that the property leasing company helped
him to find a property to rent. It is possible that over some interval, a tenant is also an owner of
a property leased by the company. For example, they may own a property in one city and lease
another in a different city. In this case, the tenant would appear in both the Tenants and Owners
collections of the company’s database during this time period.

An object’s visibility in a temporal collection is determined by the overall lifespan of the object,
the collection’s own lifespan and a membership time t, ., specified by the user. This i1s depicted
in figure 5.3. Thus, if we look at a client object through the Owners role, it is only visible
during the time period he is actually an owner, even though the object existed before (or after) its
membership in Owners.

visibility <> -
collection
object
» Time

Figure 5.3: Visibility of an object in a collection

The history of the attribute values of a real world object is stored within a single object. The
possibility of role modeling allows a real world object to be classified in different roles. The visibility
of an object in a collection denotes the time period during which it had a specific role. So, with
the approach of lifespans, visibility and roles, it is possible to model, for example, when a person
is an employee, and querying the corresponding time period is straightforward. In example 2.9 of
chapter 2, it was shown how such a query i1s done with respect to a relational data model using
coalescing. It was stated there that it 1s up to the user to find out which are the time-varying
attributes which need to be projected away prior to coalescing a table for the desired result.

The notion of a lifespan was already used in other temporal data models, for example, in
[CC87, CCI3], [DWI2, WD93] and [EW90, EWK93a]. In [CC87, CC93], the lifespan of an employee
denotes those times for which that employee is relevant to the users of the database. In [DW92,
WD93], the lifespan of a type is the union of lifespans of all objects in the type extent, and the
lifespan of a database is the union of lifespans of all types defined in the database. In [EW90,
EWKO93a], the temporal element of the surrogate attribute defines the entity lifespan. These
notions of lifespans are different from the notion of a lifespan in TOM. In TOM, the lifespan of an
object denotes when the object existed in the real world, regardless of any roles it is playing. For
example, a human being is born and dies, regardless of any role. When looking at such an object
through a specific role, only that part of the lifespan is visible during which the object had that
role. The notions of a lifespan in [CC87, CC93], [DW92, WD93] and [EW90, EWK93a] refer to
what in TOM is considered to be the visibility rather than the existence of an object.

Adding timestamps to objects leads naturally to a more general model than the usual relational
temporal models in that, not only entities and their roles, but also the roles themselves can have

5.3. GENERALISED TEMPORAL DATA STRUCTURES 87

temporal properties. By timestamping objects (and object-pairs in binary collections), a direct
comparison can be made between lifespans of objects, relationships, object roles and associations.
In the following, these various aspects of the data model TOM are considered in more detail.

5.3.2 Temporal Object Identifiers

As introduced in chapter 2, a chronon [TCGT93] is the smallest non-decomposable time unit
assumed in a temporal database, for example, a second. Despite the different interpretations
of lifespans, the same definition for a lifespan is used in TOM as given in [CC87, CC93]. Let
T = {to, 11, ...} be a set of chronons, at most countably infinite. The linear order <7 is defined
over this set, where #; <7 t; means that #; occurs before ¢;.

A lifespan 1s is any subset of the set 7. As mentioned in chapter 2, [GV85] called this sort
of timestamp temporal elements. T is assumed to be isomorphic to the natural numbers. Thus,
a lifespan can also be represented as a set of non-overlapping intervals, closed at the lower bound
and open at the upper bound.

This definition of lifespan reflects the fact that an object may appear and disappear several
times during its overall time of existence. A lifespan contains all those time points at which an
object existed.

Now, the notion of a temporal object identifier is formally introduced and a snapshot operation

defined for it.

Definition 5.1 (Temporal Object Identifier) Let O be the set of all possible non-temporal
object identifiers. A temporal object identifier toid consists of an object identifier oid € O and a
lifespan 1s :

toid ;= < oid; 1s >

In the following, the notation lifespan(toid) is used to reference the lifespan contained in the
temporal object identifier toid. OV shall denote the set of all temporal object identifiers, whereas
O is the set of non-temporal object identifiers. Value w represents the undefined object identifier.

Definition 5.2 (Snapshot of a Temporal Object Identifier) Let toid € OV be a temporal
object identifier containing oid € O as object identifier. Lett € T be a time instant. Then 1 (toid)
1s the snapshot of a temporal object identifier at a time instant t and defined as

T(toid) := IF t € lifespan(toid) THEN oid ELSE w

The snapshot of a temporal object 1dentifier at time instant ¢ returns the object identifier oid if
the object exists at ¢, otherwise the special value w is returned. Definition 5.2 is required for later
definitions.

5.3.3 Valid-Time Objects

In TOM, the term wvalue is used to mean any form of data item that can be described by the
underlying type system, for example, a base value such as an integer value or a complex value such
as an object value. For simplicity of presentation, simply integers and strings are assumed here as
base values.

Let V7 be the set of all integer values and Vg the set of all string values. The values v € (V;UVs)
have an implicit lifespan [0 <o0). The snapshot operation 7 evaluated on an integer or string
value thus always returns the integer or string value itself.

The set of values available in the temporal object data model TOM is defined as

Vv =ViuVsuOY

88 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

With definition 5.2, it is now possible to express what the snapshot of values v € V¥ r(v),
returns. If v is an integer or a string value, then the integer or string value itself is returned. If v
is a temporal object identifier, then a non-temporal object identifier (or w) is returned.

Valid-time objects are objects having a temporal object identifier. Depending on the role they
play (meaning the collection they are member of), they show corresponding property values. In
the following, the temporal object identifier of a valid-time object obj is referred to by toid(obj),
the lifespan of this object by lifespan(obj) and the object identifier by oid(obj).

Example 5.1 When creating a valid-time object in the prototype DBMS TOMS, an implementa-
tion of the data model TOM, a set of valid-time periods expressing the object’s lifespan has to be
provided by the user:

create object andreas lifespan { [1964 - inf) };
create object antonia lifespan { [1969 - inf) };
create object moira lifespan { [1970 - inf) };

create object herbert lifespan { [1964 - inf) };

create object apartl lifespan { [1980 - 1995) };
create object apart2 lifespan { [1970 - inf) };

As mentioned before, these objects will be dressed with a type when added to a collection. In
TOMS, names such as andreas are used to refer to objects which is easter than using plain object
wdentifiers. Time instant inf denotes that the object is valid until further notice. Non-temporal
objects are created by leaving away the lifespan specification.

5.3.4 Valid-Time Collections

A collection contains objects which are of the same member type. In fact, in its full generality, a
collection can contain values of any type — including object values — but, in the discussion here, the
focus is on the case of collections of objects. Recall that a collection is itself an object. Valid-time
collections are collections having a lifespan and containing valid-time objects which have their own
lifespans.

Definition 5.3 (Valid-Time Collection) A valid-time collection C consists of
o a temporal object identifier toid € OV, toid(C') = toid, and

e a collection extent ext(C) C VV.

C' = [toid, ext] denotes a valid-time collection. Since a valid-time collection is also a valid-time
object, the temporal object identifier of a valid-time collection C' can be referenced by toid(C'), the
object identifier by 0id(C') and its lifespan by lifespan(C').

Example 5.2 [In order to create the collections depicted in the figure 5.1 as valid-time collections
m TOMS, we first have to define the corresponding member types:

create type client(name : string);
create type tenant (profession : string) subtype of client;
create type owner (bank_account : string) subtype of client;

create type property(price : integer; street : string; city : string);

Now we can create the main valid-time collections Clients and Properties. Assume that the
property leasing company started to exist in 1980.

5.3. GENERALISED TEMPORAL DATA STRUCTURES 89

create collection Clients type client lifespan { [1980 - inf) };
create collection Properties type property lifespan { [1980 - inf) };

The snapshot of a collection extent ext(C) of a valid-time collection C' at a time instant ¢ is
defined to be the set of those values in the extent of ', which exist at time instant ¢. These
snapshot values have no time information attached.

Definition 5.4 (Snapshot of a Collection Extent) The snapshot of the collection extent
ext(C) C VY at a time instant, 7 (ext(C)), is defined as

re(ext(C)) := {w|Fv’ € ext(C) Av=n(v") Av # w}

Definition 5.4 will be needed to define the temporal subcollection relationship (definition 5.7) and
the temporal membership relation (definition 5.9). Now, the snapshot of a valid-time collection at
a particular time instant can be defined to be a non-temporal collection which is valid at this time
instant.

Definition 5.5 (Snapshot of a Valid-Time Collection) Let C' be a valid-time collection with
a temporal object identifier toid and an extent ext(C'). The snapshot of the valid-time collection

C, = (C), is defined as
7(C) = [1(toid(C)), 7 (ext(C))]

If the temporal object identifier toid of a valid-time collection C' is undefined (w) at time instant
t, then the extent of this collection 1s also undefined at . This means that the objects in the
extension are not visible at ¢.

5.3.5 Valid-Time Subcollection Relationship

The generalisation approach makes it also necessary to redefine the subcollection relationship
between two collections. This section introduces the valid-time subcollection relationship used
in TOM. First, the time instant definition of the subcollection relationship is given. The term
C1 =<' (5 shall denote that collection €} is a subcollection of collection C at time instant ¢.

Definition 5.6 (Subcollection Relation at a Time Instant) Let Cy and C2 be valid-time
collections. C is a subcollection of Cs at time instant t € T, Cy <t Cy, if and only if all of the
following conditions hold:

1. 1 (toid(Ch)) # w
2. m(toid(Cq)) £ w
3. m(ext(Ch)) C m(ext(Cy))

Using definition 5.6, the subcollection constraint for the temporal object data model TOM can be
defined. In the prototype system TOMS, this constraint is used to trigger actions such as update
propagations to ensure that database consistency is maintained [NSWW96].

Definition 5.7 (Valid-Time Subcollection Relationship) Let € and Cy be valid-time col-
lections. The valid-time subcollection relationship Cy <Y C'5 holds if and only if the following
holds:

vt € lifespan(Cy) : Cy <t Oy

The valid-time subcollection relationship is defined over the lifespan of the subcollection. The
valid-time subcollection relationship demands that for each time instant subcollection C; exists,
supercollection C's also has to exist, but not vice versa. So, in the example, the lifespan of any
subcollection of valid-time collection Clients must be contained in the lifespan [1980 <o00).

90 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

Example 5.3 We show how the subcollections depicted in figure 5.1 can be created. Assume that
at first, the property leasing company only dealt with renting properties owned by a parent company.
In 1982, the company decided to extend their operations and also lease properties owned by others.
During the first five years, the company only dealt with residential properties. In 1985, they started
to deal also with properties used as offices.

create collection Tenants

subcollection of Clients type tenant lifespan{ [1980-inf) };
create collection Owners

subcollection of Clients type owner lifespan{ [1982-inf) };

create collection Residences

subcollection of Properties type property lifespan { [1980 - inf) };
create collection Offices

subcollection of Properties type property lifespan{ [1985-inf) };

create collection Rented

subcollection of Properties type property lifespan { [1980 - inf) };
create collection Available

subcollection of Properties type property lifespan { [1980 - inf) };
create collection Renovating

subcollection of Properties type property lifespan { [1980 - inf) };

5.3.6 Adding and Removing Valid-Time Objects to Valid-Time Collec-
tions

Adding an object to a valid-time collection restricts the object’s wisibility in the collection in
several ways. As stated previously, the object is wvisible only during a certain time period in the
collection as determined by the collection’s lifespan, the object’s own lifespan and a membership
time specified by the user. An object’s maximal visibility in a collection is the collection’s lifespan.
This contrasts, for example, with the approach proposed in [GO93] where an object’s lifespan has
to be contained in the lifespan of the collection to which it is added.

The resulting visible lifespan 1s of the added object is the intersection of the lifespan 1s¢ of
the object with the lifespan of the collection 1s¢, intersected with the user specified membership
time tyser:

ls :=1sc Nlsp Ntyser

Example 5.4 We now want to add the valid-time objects of example 5.1 to valid-time collections
created in example 5.2:

insert object andreas into Tenants during { [1980 - inf) };
Give a value for name: Andreas

Give a value for profession: Assistant

insert object antonia into Tenants during { [1984 - 1996) };
insert object moira into Tenants during { [1992 - inf) };
insert object herbert into Owners during { [1982 - inf) };

insert object apartl into Rented during { [1980 - 1995) };

insert object apart2 into Rented during { [1987 - inf) };

5.3. GENERALISED TEMPORAL DATA STRUCTURES 91

Andreas is a client of the company since 19580. He found a property with the help of this company
and thus is a member of collection Tenants in the company’s database. When inserting objects into
a collection, the system dresses the object with the corresponding member type (if it is not already
dressed with it) and asks for attribute values (for example, name and profession). Additionally,
objects are propagated automatically to super-collections if needed.

In TOM, it 1s possible to add temporal objects to non-temporal collections and non-temporal
objects to temporal collections. The idea is that a non-temporal object is assumed to exist at time
instant now, where now actually moves on as time passes. So, if a temporal object is inserted in a
non-temporal collection, 1t is visible if it exists at time instant now. The same idea of visibility as
before is used, assuming that the collection’s valid time 1s¢ corresponds to [now-now]. Deleting
the object from the non-temporal collection means to actually remove it. On the other hand, if a
non-temporal object is added to a temporal collection, the object’s lifespan 1so is assumed to be
[now-now]. Deleting it from the temporal collection also removes it without leaving a trace. The
same ideas can be used for handling transaction-time objects.

5.3.7 Object Evolution

As stated in section 5.2, objects must be allowed to evolve and change roles during their lifespan.
This accounts for the fact that entities in the real world change their roles during their life. With
respect to the example application used in this chapter, a tenant buys a property in another city
which is then leased by the property leasing company. This client plays the role of a tenant and
then gains the role of an owner. Such changes and accumulation of roles is reflected in TOM by the
possibility that an object can migrate from one collection to another and may also be a member
of several collections at the same time.

Each collection has an associated member type. This means that for a given collection C'
and a given type Type, if member_type(C) = Type, then for any value x in the extent of C| x
must be an instance of type Type. Thus, to change collection membership, an object must also
be able to change its type while retaining the same object identity. This is referred to as object
metamorphosis. Object evolution thus consists of the following steps: First change an object’s
type (or let it gain a new type) within the type hierarchy (object metamorphosis), possibly adding
values for additional attributes, and then add the object to a new collection in the classification
structure (object migration), possibly removing it from other collections.

Assume again classification structures as depicted in figure 5.1. If an object in collection
Clients is also added to subcollection Owners, then the object first has to be dressed with member
type owner of collection Owners. Then a valid-time period tys.r has to be specified by the user
which expresses the time the object was a property owner in the real world. The visibility of this
object in the valid-time collection Owners then results in

1s := 1Sguners N lsobject MNtyuser,

where 1sguners represents the lifespan of collection Owners and lsgpjec: corresponds to the lifespan
of the client object to be added to collection Owners.

Example 5.5 Assume Moira and Andreas both decided to buy properties, but remained in the
properties already rented. They asked the leasing company to find tenants for their own properties.
Thus, they also became owners in the company’s database.

insert object andreas into Owners during { [1982 - 1995) };
Give a value for bank_account: SBG 123-456

insert object moira into Owners during { [1982 - 1987, 1991 - inf) };

92 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

Andreas bought a property in 1982 and in 1995 he decided to have another company manage his
property. Moira actually had her first property managed by the company in 1982. She sold the
property in 1987 and bought another one in 1991. When inserting objects, the system again dresses
the objects with the corresponding member type (if needed) and asks for attribute values. Object
andreas was already dressed with type person in example 5.4, so the system asks only for values
specific for type owner.

5.3.8 Temporal Associations

As described previously, relationships between objects are represented by associations. Relation-
ships may also have valid times associated with them and these are represented by temporal
associations. A temporal association i1s a valid-time binary collection together with constraints
specifying the source and target collections and their respective cardinality constraints.

Definition 5.8 (Valid-Time Binary Collection) A valid-time binary collection C consists of
o a temporal object identifier toid € OV, toid(C') = toid, and

o a collection extent ext(C) C (V x V)V where V is the set of non-temporal values ViUVgUO.

The extent of a valid-time binary collection will be a set of object value pairs together with
a lifespan. As mentioned previously, given a valid-time binary collection C', then an element of
ext(C) may be of the form <« (oidi, 0idz);1s 3> where oid;,0idy € O and 1s is the lifespan of
the relationship.

Example 5.6 According to the database schema depicted in figure 5.1, we have to create two
valid-time associations Rents and Owns. The association Rentsexists since 1980, when the com-
pany started. Swnce the company decided in 1982 to extend their activity and find tenants for
property owners, the association Owns exists since 1982. Of course, both source and target valid-
time collections have to exist during the lifespan of an association. This is checked by the system.

create association Rents
source Tenants
target Rented
lifespan { [1980 - inf) };

create association Owns
source Owners
target Properties
lifespan { [1982 - inf) };

Now we can create associations between tenants and the properties they rent, and between owners
and the properties they own:

insert binary object (andreas, apartl) to Rents during { [1980 - 1993) };
insert binary object (herbert, apart2) to Owns during { [1987 - inf) };

In case a temporal association references an object which does not exist at all or during the
specified time period, an error message is produced. This means that temporal referential integrity
needs to be checked for on both the collection and object level.

5.4. TEMPORAL CONSTRAINTS 93

5.4 Temporal Constraints

This section discusses the issue of the temporal generalisation of the classification constraints in
detail. The conditions imposed by the constraints are considered with respect to a particular time
instant and then generalised over time. This is done by redefining the membership relation for
a time instant. Then, the wvalid-time cover, disjoint and intersection constraints over valid-time
collections can be defined.

The non-temporal membership relation of a value z in a set S is denoted by @ €.y S. The
membership relation at a time instant is defined as:

Definition 5.9 (Membership Relation at a Time Instant) Let C' be a valid-time collection
of elements of type Type, member type(C) = Type, and let t € T be a time instant. Then for any
value = :Type, ¢ € VY, x is a member of C at time instant t, x €', C, if and only if both of the
following conditions hold:

1. 1 (toid(C)) # w
2. () Eser T (ext(C))

According to definition 5.4, w is never a member of a set of values 7 (ext(C)). With defini-
tion 5.9, the valid-time disjoint, cover and intersection constraints can be defined.

Definition 5.10 (Disjoint Constraint at a Time Instant) Leti t € T be a time instant. The
disjoint constraint at time instant ¢ over a set of valid-time collections C'S, disjoint®(C'S), is

defined as
disjoint’ (C'S) :& VC;, C; € CS : 0id(Cy) # 0id(Cj) = -z : w €L, Ci Nz €L, C;

set

If at least one of the two collections C; or C is undefined at time instant ¢, then C; and C; are
disjoint at time instant ¢ due to definition 5.9.

Definition 5.11 (Valid-Time Disjoint Constraint) The valid-time disjoint constraint over a
set of valid-time collections CS, disjoint? (CS), is defined as

disjoint’ (C'S) &Vt € UC]'ECS lifespan(Cy) : disjoint®(C'S)

A set of valid-time collections C'S is temporally disjoint, if no pair of member collections has a
common member value at any time point.

Definition 5.12 (Cover Constraint at a Time Instant) Let t € T be a time instant, C' a
valid-time collection and C'S a set of valid-time subcollections of C'. The cover constraint at time
instant ¢, cover® (C',C'S), then is defined as

cover' (C,CS) & Ve €l,, C 3C; € CS:x €L, C;
With definition 5.12, the valid-time cover constraint can be defined as

Definition 5.13 (Valid-Time Cover Constraint) Let C be a valid-time collection and CS a
set of valid-time subcollections of C'. The valid-time cover constraint, cover” (C, CS), is defined as

cover? (C,CS) :& Vi € lifespan(C) : cover' (C, C'S)

A set of valid-time collections C'S 1s a valid-time cover of a valid-time collection C', if each member
of C'S is a subcollection of (' and each element of C' appears in at least one collection of C'S' during
each time instant of its existence.

Temporal partition constraints can be expressed by a combination of a temporal cover and
a temporal disjoint constraint. The valid-time intersection constraint is defined following the
definitions of the temporal cover and disjoint constraints. The intersection constraint demands
that at any point in time, a collection C' which 1s a subcollection of a set of collections C'S,
corresponds to the intersection of all collections in C'S.

94 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

Definition 5.14 (Intersection Constraint at a Time Instant) Lett € T be a time instant, C
a valid-time collection and C'S a set of valid-time collections. C' is a subcollection of each C; € CS.
The intersection constraint at time instant ¢, intersect’ (C'S, C), then is defined as

intersect’(CS,C) & Ve €l,, CVC; € CS:w el C

set
The valid-time intersection constraint now can be defined as

Definition 5.15 (Valid-Time Intersection Constraint) Let C' be a valid-time collection and
CS a set of valid-time collections. The valid-time intersection constraint, intersect’ (C'S,C'), is

defined as
intersect’ (C'S,C) :& Yt € lifespan(C') : intersect’ (C'S, C)

The example schema given in figure 5.1 only uses temporal cover and disjoint constraints. The
temporal partition constraint is specified as two separate temporal cover and disjoint constraints.

Example 5.7 The temporal disjoint constraint used in figure 5.1 demands that at each time point
valid-time collection Properties exists, the subcollections Residences and 0ffices must be dis-
goint. The valid-time partition constraint demands that the three valid-time collections Rented,
Available and Renovating form a partition at each time point valid-time collection Properties
erists.

create valid constraint disjointRO disjoint ([Residences, O0ffices]);
create valid constraint coverRAR cover(Properties, [Rented, Available, Renovating]);
create valid constraint disjointRAR disjoint ([Rented, Available, Renovatingl);

The constraints specified in example 5.7 do not have lifespans. Previously, however, we stated
that all information represented as objects — including constraints — may be timestamped. This
means that with the object timestamping approach used in TOM, constraint objects may also be
extended to temporal objects having a lifespan. The constraints given in example 5.7 are checked
according to the definitions 5.11, 5.13 and 5.15. This means that the lifespans of the collections
involved specify the time periods during which the constraints have to hold. Sometimes it is useful,
however, to specify explicitly a time period during which a constraint has to hold. For example,
the disjoint constraint for collections Residences and Offices could be changed to a partition
constraint in 1990. This could be done the following way:

create constraint coverRO
cover (Properties, [Residences, Offices]) lifespan { [1990 - inf) };

In this case, the valid-time cover constraint must have a lifespan which 1s contained in all lifespans
of the collections involved. Then — instead of checking the constraint during all time instants of
the lifespan of the supercollection — the constraint is tested during the lifespan of the constraint.
The same holds for the other constraints.

5.5 Temporal Collection Algebra

So far, the temporal constructs of TOM have been introduced. Another aspect of the model is the
generalisation of the collection algebra of the OM model to give equivalent temporal operations.
As seen 1n section 5.2, all of the algebra operations in the OM model work on collections of objects
and return a result collection of objects (except the reduce operation which returns a single value).

Two categories of operations are distinguished in the temporal algebra of TOM. The first
category contains those operations which calculate a new lifespan for the result collection and new
visibilities for the objects contained in it, for example, the temporal composition operation, the
temporal cross product or temporal set operations. The second category of temporal operations only

5.5. TEMPORAL COLLECTION ALGEBRA 95

works on object identifiers while retaining lifespans and visibilities. Examples are the temporal
wnversiton or the temporal domain operations.

In section 5.2, the different non-temporal algebra operations have already been introduced.
The specification of their input and output arguments also holds for the temporal equivalents.
Now, some of the temporal algebra operations are discussed in more detail by considering example
queries, explaining how they are evaluated and giving definitions for the temporal operations. In
the prototype DBMS TOMS, it is possible to either use algebra expressions or an SQL-like syntax
for querying.

Example 5.8 We would like to know the history of tenants renting one of Herbert’s properties.
The temporal algebra expression calculating the corresponding result looks like

rangev (O-lveft.name:’Herbert’ (Owns)ov inv® (Rents))

This expression can be run in the prototype system TOMS as a query using either the algebra
exrpression

valid range (compose(select (left.name = ’Herbert’) Owns, inv(Rents)));

or an SQL-like statement

valid

range ((select own in Owns where left (own).name = ’Herbert’) compose (inv Rents));

The extent of the resulting collection, having its own lifespan [1982 <o), contains, for example,
tenant objects with the following visibilities and property values:

VALID Profession | Name
[1995 — c0) | Assistant Andreas
[1992 — o0) | Professor Moira

Operations in an algebra expression having a superscript v denote that they are evaluated using
temporal semantics with respect to valid time. In TOM, temporal semantics is actually a synonym
for snapshot reducible semantics. In example 5.8, all of the operations use temporal semantics.
According to the approach proposed in [SBJS96b, SBJS96a], the keyword valid is used to denote
that temporal evaluation semantics should be applied. In the example, the scope of keyword valid
is the whole query.

In example 5.8, first those binary objects in the temporal association Owns are selected which
have the object denoting owner Herbert on the left side. The valid-time selection 1s defined the
following way:

Definition 5.16 (Valid-Time Selection in a Valid-Time Collection) Let Cy be a valid-time
collection of type Type and P be a function that maps each element of C'y to one of the Boolean
values true or false. The valid-time selection of C1 using function P, C' = o%(C1), mapping
collection Cy to a collection C' of type Type and valid-time lifespan(C) = lifespan(Cy), is then
defined as

Vt € lifespan(Cy),Yz € C1 : P(ri(z)) = true & z €%, C

set

Next, the temporal result collection of the selection operation 1s combined with binary collection
Rents. The valid-time composition operation (o¥) composes out of two binary collections a new
binary collection by taking the objects in the domain of the first and the objects in the range of
the second and combining them if they have equal range and domain objects respectively. This
operation belongs to the first category of operations where lifespan calculation is done. The formal
definition of the temporal composition operation is

96 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

Definition 5.17 (Composition of two Valid-Time Binary Collections) Let By and Bs be
two valid-time binary collections of types (Typey, Typea) and (Types, Types) respectively. The valid-
v

time composition of By and B2, B = Byol,,Ba, returns a binary collection B of type (Types, Types)
which has a lifespan equal to lifespan(B) = lifespan(By) Nlifespan(By) and is defined as

Vi € lifespan(B) : 1i(ext(B)) = {<K z,z > |y K 2,y >€L,, BINK y, 2z >€L,, By}

Since collections in TOM also have lifespans, it has to be defined what the lifespan of a resulting
valid-time collection shall be. A non-temporal DBMS returns an error if one of the arguments of
an operation does not exist. In the temporal case, TOM is defined such that a resulting temporal
collection only covers those time instants when all of the argument collections exist. Thus the result
of a valid-time composition operation is valid only during the intersection of the two lifespans of the
valid-time collections involved. This also holds for other temporal operations of the first category.

Definition 5.17 defines that those pairs of objects are combined where the right object of the
first pair is the same as the left object of the second pair (during their common time period). In
example 5.8, we want to find tenants of properties owned by Herbert. We combine owner objects
in Owns with tenant objects in Rents through their common objects of type property. To be able
to do that with a temporal composition operation, we first have to invert collection Rents. The
valid-time inversion operation (inv?) just switches source and target objects of a binary collection,
leaving the timestamp the same. This operation belongs to what was earlier called the second
category of operations in the temporal algebra of TOM. The formal definition of this operation is

Definition 5.18 (Inverse of a Valid-Time Binary Collection) Let By be a valid-time binary
collection of type (Types, Types). The valid-time inverse of By, B = invY,,(B1), returns a binary

collection B of type (Typea, Type1) which has a lifespan equal to lifespan(B) = lifespan(B;1) and
1s defined as

vt € lifespan(B) : mi(ext(B)) = {K y,z > | K z,y >€.,, B1}

The result of the composition operation O'l”eft.mme:,HerbeM,(Owns) oV invY (Rents) is a binary
collection containing pairs having an owner object on its left and a tenant object on its right side
together with their common time periods. Since we look for the tenant objects of this binary
collection, only the range of the binary collection is of interest. The corresponding operation is the
temporal range operation (range’), which can be defined similarly to the temporal inversion and
also belongs to the second category of temporal operations.

Definition 5.19 (Range of a Valid-Time Binary Collection) Let By be a valid-time binary
collection of type (Typer, Typez). The valid-time range of By, C' = range!_,(B1), returns a unary

valid-time collection C' of type Typea which has a lifespan equal to lifespan(C) = lifespan(B) and
1s defined as

vt € lifespan(C) : m(ext(C)) = {y|Fz < =,y >€t,, B1}

The next example uses a temporal set difference and a temporal cross product operation. The
temporal cross product operation is similar to the temporal composition in that it calculates the
common lifespan of both collections and objects involved and returns a valid-time binary collection.
Its arguments, however, are unary valid-time collections.

Example 5.9 We would like to find those residences and the corresponding time period during
which no higher priced offices exist. The corresponding algebra expression looks like

Restdences<y domain”(O'l”eft.p”ceqight.pnce(Residences xV Offices))
We can query the system either with the algebra expression

valid Residences -
domain(select (left.price < right.price) (Residences * 0ffices));

5.5. TEMPORAL COLLECTION ALGEBRA 97

or the SQL-like statement

valid
select r in Residences
where not exists (select o in offices where r.price < o.price);

The result of this query is a valid-time collection with a lifespan [1985 <o0), and it contains, for
example, residence objects with the following vistbilities and property values:

VALID Price | Street City
[1985 — 1991) | 1200 Stegstrasse | Pfaeffikon
[1987 — 1991) | 900 Hauptplatz | Rapperswil

All of the operations in the algebra expression have temporal semantics. This is denoted by the
keyword valid at the beginning of the query whose scope again is the whole query. The valid-time
cross product Residences x¥ Offices generates pairs of object identifiers together with their common
lifespan. It returns a collection of valid-time binary objects containing pairs of non-temporal object
identifiers together with a lifespan which is calculated by the intersection of the lifespans of the
objects involved. Formally, the temporal cross product is defined as

Definition 5.20 (Valid-Time Cross Product of Collections) Let Cy, Cy be valid-time col-
lections of types Type; and Types respectively. The valid-time cross product of C7 and Cb,
B = C) xY,; Cs, returns a binary valid-time collection B of type (Typei, Typea) which has a
lifespan equal to lifespan(B) = lifespan(Cy) Nlifespan(Cs) and is defined as

vt € lifespan(B) : mi(ext(B)) = {K 2,y > |z €', C1 Ny €., Ca}

In the result of Residences xV Offices, we then select those pairs of residence and office objects
where the residence’s price was lower than the office’s price (together with the time period during
which this is true). Last, the valid-time difference of the domain of the resulting valid-time binary
collection and collection Residences is calculated returning those residences with time periods
for which no higher priced office can be found. The temporal domain operation can be defined
similarly to the temporal range operation (definition 5.19). The difference is that the temporal
domain returns the objects on the left side in a binary collection.

Definition 5.21 (Domain of a Valid-Time Binary Collection) Let By be a valid-time binary
collection of type (Typei,Typea). The valid-time domain of By, C = domain?_,(B1), returns a
unary valid-time collection C' of type Types, has a lifespan equal to lifespan(C) = lifespan(B)
and is defined as

vt € lifespan(C) : m(ext(C)) = {z|qy < =,y >€t,, B1}

The valid-time difference, union and intersection operations belong to the first category of
operations. Temporal set difference in our model is defined as

Definition 5.22 (Valid-Time Difference of Collections) Let €y and Cy be valid-time col-
lections of member types Type; and Types respectively. The valid-time difference of Cy and Cs,

C' =1 &, Oy, mapping the two collections to a collection C' of member type Type; and valid-time
lifespan(C) = lifespan(Ch) Nlifespan(Cy), is defined as

vt € lifespan(C) : r(ext(C)) = {z|xv €., C1 ANz &%, Ca}

Valid-time union and intersection can be defined in a similar style to definition 5.22. The type
of the result collections of valid-time union and intersection operations are described using the
notions of greatest common subtype and least common supertype, as we have introduced them in
section 5.2.

98 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

Definition 5.23 (Valid-Time Union of Collections) Let Cy and Cy be valid-time collections
of member types Typey and Typea. The valid-time union of Cy and Cy, C' = C1UY,_.Cy, mapping the
two collections to a collection C' of type Type = Type; UTypes and a lifespan equal to lifespan(C) =
lifespan(Ch) Nlifespan(Cy), is defined as
vt € lifespan(C) : r(ext(C)) = {z|xv €., C1 VvV €, Ca}

Definition 5.24 (Valid-Time Intersection of Collections) Let Cy and C be valid-time collec-
tions of member types Type; and Type,. The valid-time intersection of Cy and Cy, C = C1NY,, Cs,
mapping the two collections to a collection C' of type Type = Typey M Types and a lifespan equal to
lifespan(C) = lifespan(Ch) Nlifespan(Cy), is defined as

vt € lifespan(C) : 7(ext(C)) = {z|x €., C1 ANz €L, Ca}

The above definitions of valid-time union, intersection and difference ensure that, for example,
the valid-time intersect operation can be expressed using the valid-time difference operation:

CiNY Cy = O & (C & Cy)

5.6 A Similar Temporal Object Data Model: TEER

In some aspects, TOM is similar to the TEER model [EW90, EWK93a] which was mentioned
already 1n chapter 3. TEER also uses temporal elements for timestamping entities and introduced
notions of temporal relationships and temporal subclass relationships, and it mentions the idea
behind temporal disjoint constraints. [EW90, EWK93a] do not discuss all constraints, however.
Timestamping meta-data and role modeling is not considered. Additionally, with respect to an
algebra, they only support what they call temporal boolean expressions, temporal selection and
temporal projection. A temporal boolean expression is a conditional expression on the attributes
and relationships of an entity. Instead of returning simply true and false as with non-temporal
boolean expressions, a temporal boolean expression returns what they call true times which are
temporal elements during which the expression returns true. A temporal selection condition com-
pares two temporal elements using set-comparison operators =, # and C. The temporal elements
can be results of a temporal boolean expression. The temporal projection is applied to a temporal
entity and restricts the timestamps of the entity’s attributes to a specified temporal element.

[EW90, EWK93a] thus extend the algebra of their underlying non-temporal data model with
the operations described above, they do not generalise it. The resulting query language thus is
not as powerful as the temporal algebra of TOM. For example, their algebra does not support
temporal negation.

5.7 Summary

The temporal object data model TOM not only generalises the data model structures to sup-
port temporal data, but also considers all parts of a data model by temporally generalising data
structures, constraints and collection algebra.

Rather than extending the data structures with additional properties, the approach of extending
the notion of object identifiers is used in TOM, adding timestamps to object identifiers. The un-
derlying model OM is generalin the sense that entities, collections, associations and even databases
are considered as objects. Further, it is generic in the sense that it is not based on a specific type
system but can be used in a variety of programming language environments and implementation
platforms. These advantages carry over to the temporal data model TOM. By generalising the
notion of an object identifier to a temporal object identifier, everything considered as an object can
be timestamped. In the temporal object data model TOM, for example, collections, constraints,
and even types, methods, and so on are objects. Additionally, the possibility that objects may

5.7. SUMMARY 99

have several roles at the same time and evolve by changing roles makes both OM and TOM very
powerful models.

Experiences in developing the model TOM, together with the prototype implementation TOMS,
show that the generalisation approach leads naturally to more general models and systems. The
generality and orthogonality of the underlying data model OM are major contributing factors and
therefore essential to fully exploit the generalisation approach.

The next chapter describes two different approaches how the temporal object data model TOM
can be implemented.

100 CHAPTER 5. A TEMPORAL OBJECT DATA MODEL : TOM

Chapter 6

Implementing the Temporal

Object Data Model TOM

This chapter sketches how the temporal object data model TOM presented in the previous chapter
can be implemented. Two different possibilities are presented. A first approach implements the
data model and a type system from scratch. The second approach is based on specifying an ADT
for the commercial DBMS O».

With respect to object-oriented DBMS, there 1s a still unanswered question as to whether the
inherent extensibility of these systems is sufficient to build temporal database applications. Thus,
to shed some light on this question, the experiences made with building and using the data model
TOM as an application in Qs will also be discussed in this chapter.

6.1 Different Possibilities to implement the Temporal Ob-
ject Data Model TOM

TOM is generic, which means that its definition does not assume anything particular about the
type system. On one hand, this genericity 1s inherited from its underlying object data model OM.
On the other hand, the approach of temporal object identifiers allows the model to stay generic,
in contrast to the extension approaches adding time attributes to the data structures.

The TOM model defines temporal data structures, operations and constraints on the collection
and object level. It does not specify anything about histories of attribute values, since attributes
are defined on the type level. Depending on the type system upon which the temporal object data
model TOM is built, different scenarios of attribute history management are possible.

Data Model TOM

Implementation TOMS 02
Figure 6.1: Different possibilities to implement the generic temporal object data model TOM
Figure 6.1 shows two different possibilities of implementing the data model TOM. The two
approaches actually represent two different levels the temporal data model may be implemented on.

The first possibility is to implement the data model and a type system from scratch. Implementing
a new data model, a type system, a query language, transactions and so on is the work of a DBMS

101

102 CHAPTER 6. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM

engineer. He implements all these features himself. The prototype DBMS TOMS is an example of
such an approach.

The second possibility is to use all features of an existing DBMS, its type system, its storage
management, 1ts transactions and security and recovery mechanisms and so on. This approach
resembles more the work of an application engineer. This thesis also describes such an approach,
using the object-oriented DBMS O to implement the TOM data model as a layer on top of it.
The additional layer actually is an ADT based on the type system of the DBMS Os.

6.2 The Temporal Object Model System TOMS

This section describes the features and the implementation of the prototype system TOMS which
is an implementation of the temporal object data model TOM. It shows that implementing the
temporal object data model TOM is straightforward and leads to an efficient system.

6.2.1 Features of TOMS

TOMS (Temporal Object Model System) is a one-to-one implementation of the TOM model. The
advantage of such an approach is the full support of every feature directly by the system, together
with an efficient implementation. There are no restrictions of an underlying system which influence
the new system.

TOMS is a single-user system. The idea behind this prototype system was to verify the design
of the temporal data model TOM and to show the feasibility to implement it. Thus, the focus was
on the implementation of the model’s concepts rather than on issues such as user interfaces and
storage management aspects. The examples of chapter 5 have shown that unique object names
are used to reference objects for convenience. A simple command-oriented interface allows the
creation and deletion of objects and the execution of queries and other statements. Query results
are displayed as tables. For persistence, files are used which store both data and meta-data in a
structured way.

Since the TOM model is generic, a type system has to be specified when implementing a
corresponding DBMS. Additionally, the different kinds of objects have to be supported. Objects
can be instances of types, or special forms such as collections, associations and constraints. Last
but not least, the algebra operations and a query language have to be provided. Examples showing
how types, objects, collections and associations are defined and how temporal queries are written in
TOMS were given in chapter 5. The following subsections sketch how these parts were implemented
in the prototype DBMS TOMS.

6.2.2 A simple Type System

In the TOM model, an object may be dressed and stripped with several types during its existence.
Additionally, it may have different types simultaneously. Depending on which role the object is
viewed in, different attribute values are displayed. Types are created and dropped in the following
way:

create type client(name : string);

create type tenant (profession : string) subtype of client;

create type owner (bank_account : string) subtype of client;

create type property(price : integer; street : string; city : string);

drop type property;
drop type owner;
drop type tenant;
drop type client;

6.2. THE TEMPORAL OBJECT MODEL SYSTEM TOMS 103

When an object is inserted into a collection, it has to be dressed with the corresponding member
type of the collection. Recall the example of a property leasing company used in chapter 5. To
insert an object into the collection Tenants, the object has to be dressed with the collection’s
member type tenant.

In TOMS, the meta-data describing these type definitions is stored in three different persistent
data structures. Data structure subtype stores the type hierarchy, data structure type the type
descriptions and data structure type_extent the extent of the types. The type hierarchy stores pairs
of subtype-supertype relationships. The type description contains the name of the type plus the
attribute names with their corresponding types. For subtypes, only the new attributes are stored.
Similarly, in the type extent, only the attribute value histories of those attributes defined at this
level are stored. This is done in order to avoid data redundancy. The example schema given in
picture 5.1 shows a type client and its two subtypes tenant and owner. Type client has an
attribute name. The value of attribute name of an object dressed with both type tenant and type
owner 1s the same, regardless if the object is viewed as a tenant or as an owner. The disadvantage
of this horizontal fragmentation is that for each object, its attribute value histories have to be
collected by going up the type hierarchy. In the example, an object dressed with type tenant
has an attribute profession and inherits attribute name from its supertype. When this object
is displayed — for example, when browsing through collection Tenants — the attribute values are
set together by first taking the attribute values stored in the extent of type tenant. Then the
system checks whether there exists a supertype, and in the case 1t does, the attribute values of the
supertype are added. This is done until no further supertypes are found.

TOM uses the notion of visibilities. Each object is visible in a collection during a certain time
period. The result of a query is a collection containing objects with visibilities. The visibility of
an object restricts the visibilities of its attribute value histories. TOMS thus uses the visibility of
an object in a result collection to restrict its attribute value histories. Assume that the attribute
price in type property stores the history of renting prices a property had during its existence. If
the property object is viewed during a time period [1980 <1985), TOMS automatically restricts
the price history to this time period as well. When an attribute value is updated, TOMS modifies
its value history accordingly.

6.2.3 Implementing Temporal Objects

Chapter b has introduced the data model TOM in detail. The model defines different temporal
objects — objects which can be dressed with types, collections, associations and constraints. This
section describes how these different kinds of objects are implemented in TOMS.

6.2.3.1 Simple Temporal Objects

In its simplest form, an object in TOMS consists of the object identifier (OID) and the lifespan.
This was called a temporal object identifier. When a user creates an object, he specifies the lifespan
of the object and a name which can be used to refer to the object. An object is created in the
following way:

create object andreas lifespan { [1964 - inf) };

TOMS generates a new OID and stores it together with the name, for example, andreas, and
the lifespan, for example, {[1964 <00)}, in a persistent data structure object.

Whenever an object is added to a collection, the system checks whether or not the object is
already dressed with the corresponding member type during its membership time period. If not,
it 1s dressed with it and the user is asked for the required attribute values.

6.2.3.2 Temporal Collections

A temporal collection consists of a temporal object identifier and an extent. The extent is a set of
temporal objects which are members of the collection. The extent thus contains elements of the

104 CHAPTER 6. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM

form
< 0ID; tyser >

where 0ID is the object identifier of a collection member and ty ., is the user-specified membership
time. As we have seen, collections are created the following way:

create collection Clients type client lifespan { [1980 - inf) };
create collection Tenants
subcollection of Clients type tenant lifespan{ [1980-inf) };

TOMS stores meta-data on collections in three persistent data structures. A first persistent
data structure collection contains the temporal object identifier and the name and member type
of the collection. TOMS assumes that a collection always has the same member type during its
existence. However, instead of storing a single member type for a collection, the history of member
types could be stored. This way, schema evolution would be supported.

A collection can be a subcollection of another collection. This hierarchy is stored in a second
persistent data structure subcollection. The collection hierarchy is mapped to pairs of subcollection-
supercollection relationships. In a third persistent data structure collection_extent, the extent of
the collections is stored. It contains the collection name and the object identifiers and membership
times of the objects contained in the collection.

6.2.3.3 Temporal Associations

Associations are stored in a similar way to collections. As seen before, an association relates a
source and a target collection with each other, and cardinality constraints specify how often an
object of the source or target collection may take part in a relationship at a specific time instant.
TOMS stores this meta-data in a data structure association.

The extent of an association contains binary objects of the form

< (0ID;, OIDy); 1ls >

A binary object (0ID;, 0IDy) consists of two object identifiers 0ID; and 0IDs, denoting which two
objects — one of the source and one of the target collection — are related with each other. The lifes-
pan specifies the time period, during which the two objects are related with each other. In TOMS,
the extent of an association is stored separately in a persistent data structure association_extent.
In both data models OM and TOM, it i1s possible to have hierarchies of associations in a
similar fashion to collections. These sub-association relationships are stored in data structure
subassoctations where pairs of subassociation-superassociation relationships are stored.

6.2.4 Implementing the Temporal Constraints

Chapter b introduced the different forms of constraints supported in the OM data model and its
temporal generalisation TOM. There are model inherent constraints such as (temporal) subcollec-
tion relationships, (temporal) association constraints, (temporal) referential integrity, and user-
specified constraints such as (temporal) partition, cover, intersection and cardinality constraints.

In the following two subsections, these different constraints are briefly discussed, showing how
they are implemented in TOMS.

6.2.4.1 Model Inherent Constraints

The (temporal) subcollection relationship demands that a subcollection may only exist when the
corresponding supercollection exists. Additionally, an object may only be member of a subcol-
lection at those time instants when it is also a member of the supercollection. After creating a
new subcollection, TOMS checks whether or not the lifespan of the subcollection is contained in
the lifespan of its supercollection. This is done by subtracting the lifespan of the supercollection

6.2. THE TEMPORAL OBJECT MODEL SYSTEM TOMS 105

from the lifespan of the subcollection. A non-empty result denotes the violation of the constraint.
Objects added to a subcollection are tested whether they are also member of the corresponding
supercollection during the specified time period. If not, TOMS automatically propagates them.

The (temporal) referential integrity constraint checks the validity of references to objects. Such
references may appear in several places, for example, a relationship stored in an association actually
consists of references to objects, and an association itself references a source and a target collection.
In the non-temporal case, it simply needs to be checked whether or not the referenced object exists.
In the temporal case, it not only needs to be checked if a referenced object does exist at some point
in time, but whether this object exists during the whole time period it is referenced. In TOMS,
temporal referential integrity is tested using the temporal difference operation for sets of intervals.
Assume, for example, an association A having a lifespan 1s 4, relating objects in a source collection
Cs with objects in a target collection Cp. The temporal subtraction of source collection Cg from
the domain of association A, domain(A) -! Cg, should return an empty collection having an empty
lifespan. Otherwise the association either exists during a time period in which the source collection
does not exist, or it references objects in the source collection during time periods they are not
visible in the source collection. The same 1s also done with respect to the target collection.

A model inherent constraint of TOM which does not have a counterpart in the non-temporal
data model OM is wisibility. Recall that visibility is the time period an object is visible in a
collection, and that this time period depends on the collection’s lifespan, the object’s lifespan and
the user-specified time of the object’s membership in the collection. The user-specified membership
time 1s stored explicitly in the database, and the visibility of an object is calculated on demand,
for example, when the object is displayed. At commit time, newly inserted objects are tested to
determine whether or not they are visible in the collection. If not, the user is notified and the
object removed from the collection.

Note that while TOMS does neither support the timestamping of types nor the changing of
member types of collections, it would be possible to consider types to be objects as well. This means
that in this case a type also has a lifespan. As mentioned earlier, it would be further possible to
store the member type history of collections. In this case, the DBMS must check additionally for
the temporal member type constraint which demands that a collection must always be associated
with an existing type.

6.2.4.2 User-Specified Constraints

User-specified constraints such as the partition, cover, intersection and cardinality constraints and
their temporal counterparts are dynamic in the sense that the wuser specifies the exact criteria
which need to be checked. This is done using the constraint specification language which allows
the definition of (temporal) partition, cover, intersection and cardinality constraints. The dynamic
aspects of these constraints, for example, the collections involved, are stored as meta-data. At
commit time, this meta-data is accessed by the constraint checker and corresponding tests are
done. For example, a temporal disjoint constraint for two subcollections €; and Co calculates the
temporal intersection of them, C; N’ C3. In the case that a non-empty collection extent results,
the constraint is violated. The other constraints are tested accordingly.

Generally it is possible for constraints to be rewritten as queries, as it was the case for TimeDB.
TOMS also uses this approach for constraint evaluation. Hence the implementation of the (tem-
poral) algebra operations can be reused for constraint checking.

TOMS does not verify all of these constraints every time a database is committed. It registers
the modifications done to the database which might lead to an inconsistent state, for example,
modifying the extent of a collection. Then, only the constraints related with the modified collections
have to be checked.

6.2.5 Implementing the Temporal Collection Algebra

Most of the algebra operations in TOMS are actually simply manipulating object identifiers and
lifespans. This provides for an easy implementation of the (temporal) algebra operations. Types

106 CHAPTER 6. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM

and attribute values of objects are needed, for example, when selecting objects with respect to
some attribute value, when mapping objects to new ones or when displaying objects.

Important for the temporal algebra are three operations defined on sets of intervals. These basic
operations on lifespans and visibilities are used in several places. In TOMS, they are the basis for
the implementation of the temporal collection algebra. First, a short description of these basic
operations is given and then the implementation of the temporal algebra operations is described.

6.2.5.1 Operations on Lifespans

Section 2.1.4 introduced the three set-theoretic operations union, intersection and difference for sets
of intervals. In TOMS, these operations are used for calculating time periods, for example, during
query evaluation or constraint checking. Since they are used wherever temporal data i1s handled
in the system, we consider them to be essential in building the TOMS DBMS. Each operation has
two arguments which are sets of intervals and returns a set of intervals:

intersect(S1 : set(interval), S2 : set(interval)) : set(interval)
union(S1 : set(interval), S2 : set(interval)) : set(interval)
difference(S1 : set(interval), S2 : set(interval)) : set(interval)

Each operation returns maximal time periods. For example, the union of two sets

S1
S2

{ [1980-1990), [1992-1997) }
{ [1975-1982), [1988-1993) }

returns a set containing a single interval :
union(S1, S2) = { [1975-1997) }

As mentioned already in chapter 2, these operations are closed with respect to sets of intervals.

6.2.5.2 Temporal Collection Algebra Operations

This section describes how the temporal collection algebra was implemented in TOMS. As shown
in chapter 5, the collection algebra consists of an extensive set of operations. There are operations
such as the set operations union, intersection and difference of collections, the selection operation
and the cross product of two collections. Additionally, there are operations on binary collections
such as the compose, inverse, domain and range operations.

Most of these operations do not access attribute values during their calculations. They can be
implemented by simply manipulating object identifiers and time periods. Each temporal operation
returns the lifespan of the resulting collection, the extent of this result collection plus a description
of its member type. When the result objects are displayed, the type description is analysed and
the corresponding attribute value histories are displayed.

In the following, the implementation of some of these temporal algebra operations is described
using pseudo code. First, the implementation of the temporal set intersection operation is pre-
sented. As defined in section 5.2, the resulting type of an intersection operation is the greatest
common subtype (GCS). In TOMS, the valid-time set intersection is implemented the following
way:

valid_intersect (IN Lifespanl-Extentl1-Typel,
IN Lifespan2-Extent2-Type2,
0UT Lifespan-ResultExtent-GCS(Typel, Type2));
BEGIN
Lifespan := intersect(Lifespanl, Lifespan2);
ResultExtent := {};

FOR EACH <0ID; V1> IN Extentl DO
IF <0ID; V2> IN Extent2 THEN

6.2. THE TEMPORAL OBJECT MODEL SYSTEM TOMS 107

V := intersect(intersect(V1l, V2), Lifespan);
IF not_empty (V) THEN add(<0ID; V>, ResultExtent) END IF;
END IF;
END FOR;
END valid_intersect;

The valid-time intersection has two input and one output parameter. The two input parameters
are the two collections which shall be intersected, and the output parameter returns the resulting
collection. Each collection is described as a triple Lifespan-Extent-Type where Lifespan is the
lifespan of the collection, Extent is the set of objects contained in the collection and Type is the
member type of the collection.

The lifespan of the resulting collection is the intersection of the two lifespans of the collections
to be intersected. The extent of the resulting collection then is determined by taking an object
from the extent of the first argument collection and testing whether this object is also a member
of the second collection. If yes, the object’s visibility in the first collection (V1) is intersected with
the visibility of the object in the second collection (V2). Additionally, the resulting visibility has
to be restricted by the lifespan of the resulting collection. In the case that the resulting visibility V
is not empty, the OID of the object together with this new membership time period is inserted in
the extent of the result collection. The resulting type 1s the greatest common subtype of the two
collection types, GCS(Typel, Type2).

The valid-time cross product of two unary collections is calculated in TOMS in the following
way :

valid_cross(IN Lifespanl-Extentl-Typel,

IN Lifespan2-Extent2-Type2,

OUT Lifespan-ResultExtent-(Typel, Type2));
BEGIN

Lifespan := intersect(Lifespanl, Lifespan2);
ResultExtent := {};

FOR EACH <0ID1; V1> IN Extentl1 DO
FOR EACH <0ID2; V2> IN Extent2 DO
V := intersect(intersect(V1l, V2), Lifespan);
IF not_empty (V) THEN add(<(0ID1, 0ID2); V>, ResultExtent) END IF;
END FOR;
END FOR;
END valid_cross;

There are again two input and one output parameter. The input parameters contain the
lifespans, extents and types of the two collections. The lifespan of the resulting collection is once
more the intersection of the two lifespans of the input collections. The resulting collection contains
binary objects in its extent, thus, the resulting type is the binary type (Typel, Type2). The
extent 1s determined by combining each object of the first collection with each object in the second
collection. The visibilities of the resulting binary objects are the intersections of the visibility
of the object in the first collection (V1) with the visibility of the object in the second collection
(V2), restricted to the lifespan of the resulting collection. Each binary object having a non-empty
visibility V is then added to the resulting extent.

As seen before, neither the temporal intersection nor the temporal cross product operation
accesses any type information or attribute values. The temporal selection operation, however,
usually selects objects with respect to attribute values. In TOMS, the valid-time selection operation
has been implemented according to the following pseudo code:

valid_select(IN Lifespan-Extent-Type,

IN Predicate,

0UT Lifespan-ResultExtent-Type);
BEGIN

108 CHAPTER 6. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM

ResultExtent := {};

FOR EACH <0ID; V1> IN Extent DO
V2 := true_time(Predicate, 0ID, V1, Type);
IF not_empty(V2) THEN add(<0ID; V2>, ResultExtent) END IF;
END FOR;
END valid_select;

The resulting collection of a valid-time selection has the same lifespan and type as the given
collection. A predicate is used to determine which objects in the extent of the argument collection
shall be selected. FEach object in the extent is tested whether it fulfills the predicate during a
non-empty time period. This 1s done in procedure true_time, which accesses the attribute values
of the objects when needed. Its result is a time period, which, in the case that it is non-empty, is
the new visibility of the object in the resulting collection.

Next, the implementation of the algebra operations on binary collections is sketched. The ex-
ample operation described is the valid-time domain operation. The following pseudo code describes
the valid-time domain operation as implemented in TOMS:

valid_domain(IN Lifespan-Extent-(Typel, Type2),
OUT Lifespan-ResultExtent-Typel);
BEGIN
ResultExtent := {};

FOR EACH <(0ID1, 0ID2); V1> IN Extent DO
IF <0ID1; V2> IN ResultExtent THEN
V := union(V1, V2);
remove (<0ID1; V2>, ResultExtent);
ELSE
vV :=Vi1
END IF;
add (<0ID1; V>, ResultExtent);
END FOR;
END valid_domain;

The input is a binary collection, whereas the output collection 1s unary. The lifespan of the
resulting collection is the same as the lifespan of the argument collection. The member type of the
resulting collection is Typel. The resulting extent contains all OID which appear on the left hand
side of the binary objects contained in the extent of the given collection.

The corresponding temporal range operation is implemented the same way. It returns a unary
collection of type Type2 and contains the set of OID on the right hand side of the binary objects
in the given extent.

Furthermore, the temporal inverse operation simply changes each binary object

<(0ID1, 0ID2); V>
in the given extent to
<(0ID2, 0ID1); V>

and returns a binary collection of type (Type2, Typel).

All other temporal algebra operations can be implemented in a similar way. It is obvious
that the implementation of the temporal collection algebra is not very complicated. In most
operations, only temporal object identifiers have to be accessed and manipulated. The temporal
object identifier carries enough information needed when calculating the results of the temporal
algebra operations. No attribute values have to be accessed. This efficient way to implement the
temporal algebra is another advantage of the temporal object data model TOM. It is possible due
to the separation of typing and classification introduced in the underlying OM model.

6.3. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM USING Os 109

The prototype system TOMS was implemented in SICStus Prolog [Swe93]. As mentioned
before, the data is stored in files for persistence. The performance of the algebra operations,
as described above, can additionally be improved using well-known optimisation techniques, for
example, algebraic query optimisation and indexes.

6.3 Implementing the Temporal Object Data Model TOM
using O,

There is an ongoing debate as to whether object-oriented data models should be extended or
generalised after all, since their inherent extensibility can be used to support, for example, temporal
applications [Sno95a]. This section shows how it is possible to use an ADT for time to support
temporal database applications. Specifically, the temporal object data model TOM is mapped to
the type system of the object-oriented DBMS Os.

6.3.1 Using O; to manage Temporal Data

The system architecture of the object-oriented DBMS O [O2] is divided into several layers. As
depicted in figure 6.2, the base of Os is the OsEngine which provides all the features of a DBMS
and all the features of an object-oriented system. Several programming interfaces are built on top
of the OsEngine.

To implement TOM on top of Os, the O2C and OQL interfaces are used to support temporal
functionality as specified in the TOM model. O,C is a fourth generation language based on the
programming language C. OQL is an SQL-like query language.

C .. 0.C oQL

O _Engine
5 g

Figure 6.2: Part of the system architecture of O,

The approach chosen to extend O; with time is based on the idea of a root class supporting
time attributes and special methods operating on them. These methods, used together with the
non-temporal query language OQL, allow temporal queries to be written. Another approach would
be to use the C interface of Os and supply temporal functionality and maybe even a new temporal
query language by adding a library written in C. This would effectively produce a new data model.
However, as mentioned before, we consider here only the general application programming level of
such a system and not extensions at lower levels which are more the task of the database engineer.

The following subsections show how we implemented the ADT for time in Os. The structural
part of the root class TempObject is described and examples are given showing how it can be used
to implement valid-time collections and associations. Finally, the implementation of the special
methods operating on timestamps together with a few examples of temporal queries written in

OQL are discussed.

6.3.2 The O, Data Model

Prior to the description of how the temporal object data model TOM was mapped to Os, a short
overview on the data model of O is given.

The Os data model distinguishes between types and classes. A type defines the structure of
values, whereas a class describes the data structure and the signatures of the methods of objects.
The identity of a value is the value itself, whereas an object has a unique object identifier.

110 CHAPTER 6. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM

An object encapsulates both data and behaviour. The state of the object is specified in the type
specification of a class. The signatures of the methods of the object are specified in the method
part of the class definition. The method body 1s implemented separately from the class definition.

Objects and values do not automatically remain in the database after the program that created
them has ended. Oz uses the concept of persistence by reachability. An object or value is persistent
if 1t is named, or it is attached to a named object or value, or is attached to another persistent
object or value. In other words, it 1s persistent if 1t 1s reachable from another persistent object or
value. A collection as we know it from the OM model can be implemented in Os as a named set,
a bag or a list of objects.

Example 6.1 We would like to model a collection of client objects in Os. A client object is
an instance of a class client. The class client consists of a data structure which is a tuple
containing attributes such as the name and the address of a client and a method which can be used
to witialise the data structure with values. Values in attribute address are of type address_type
which 1s a tuple containing attributes street and city. This type is defined separately from the
class definition. A collection which persistently stores instances of class client is defined as a
named set of client objects.

type address_type : tuple(street : string, city : string);

class client public inherit Object

type /* Specification of the state */
tuple(name: string, address : address_type)
method /* Specification of the behaviour */
public init(...)
end;
name Clients : set(client); /* A named value */

Example 6.1 shows the definition of a class of client objects and a persistent collection Clients.
A named (persistent) value consists of a name and a type specification, for example, set (client).
The definition of a named object would consist of a name and a class.

O3 is compatible with ODMG [Cat93]. The ODMG standard defines a common object data
model and object definition and object query language for object-oriented DBMS.

6.3.3 Lifespans in O,

05 supports the specification of types and classes. A class consists of a state and behaviour. The
state is specified by a data structure. The behaviour of the class consists of different methods. A
valid-time object now shall consist of at least a timestamp containing the lifespan and methods
which can be used to do timestamp calculations.

A lifespan in TOM consists of a set of non-overlapping time periods. A time period corresponds
to a time interval. These time intervals are the basic time units for lifespans, which we define in
O as follows:

type Interval : tuple(VTS : Date, VTE : Date);

In the examples, time intervals which are closed at the lower and open at the upper bound,
consist of a starting (VTS, Valid Time Start) and an ending date (VTE, Valid Time End). A lifespan
then can be modeled as a set of intervals.

As already mentioned in the previous chapter, TOM supports temporal object role modeling.
An important feature which must be supported for role modeling is that an object can be dressed
with different types at the same time. The object-oriented DBMS Os does not allow an object to
have several types at the same time, however. In O, an object which is a member of two different
sets has the same attribute values in both sets. As with the temporal model TOM, it should be

6.3. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM USING Os 111

possible to model the fact that an object’s roles vary over time and, further, it may have many
roles at the same time. To do this, a way must be found to be able to represent the logical entity
and its different temporal roles in Os.

The problem is to determine which objects denote the same real world entity. A set valued
attribute could be added, for example, to each object which contains references to other objects
which actually stand for the different roles of the real world entity. Or objects denoting a role could
be pointing to a root object, an approach which is similar to what has been proposed for views in
05 [dS95]. A third approach is to add a key value to objects. This is depicted in figure 6.3. A
logical entity Andreas is stored as several instances in the database, where each instance represents
a specific role of the logical entity. The key value is unique for one real world entity. Objects in
the DBMS with the same key value refer to the same real world entity.

The first and second approaches lead to quite a lot of pointer chasing and it is hard to keep
the references consistent. For simplicity, the third approach is used in the following.

Logical Entity:

Andreas) Entity ID

(KEY)

Roles:

Py
Member of .
Clients 6 Roles of logical

entity are

Member of » represented
Tenants B by instances of class

» TempObjects,
Member of 5 having same KEY
Owners value

» Time

Figure 6.3: Roles represented in O,

These ideas lead to the following definition of the structural part of a root class TempObject
for temporal objects:

class TempObject inherit Object
public type
tuple (VALID : set(Interval),
KEY : integer)
end;

Attribute KEY shall be some form of system-generated entity identifier. Each object to be times-
tamped now can be derived from class TempObject.

6.3.4 Temporal Data Structures

In the previous section, the notion of a temporal object TempObject for O has been specified.
Now, this class is used to model a temporal database application. Any class whose instances shall
be timestamped is derived from class TempObject. As an example, the database for a property
leasing company is implemented as it was introduced in the previous chapter. The schema of the
corresponding database was given in figure 5.1.

In O3, the timestamps are part of the type specification. Additionally, the user has to manage
the attribute value histories himself. These are important differences to the approach described
in section 6.2 where timestamps are part of the object identifier and attribute value histories are
handled directly by the system. In O, we model attribute value histories as sets of temporal
objects. Fach temporal object in such a set contains a specific value the attribute had during a
certain time period. In the following example, only attribute price in type property is assumed
to be time-varying.

112 CHAPTER 6. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM

Example 6.2 We implement the database schema for the property leasing company as given in
figure 5.1. First, we define classes client, tenant, owner and property which correspond to
the type specifications for TOMS given in example 5.2. Class property contains the time-varying
attribute prices which is modeled as a set of temporal objects of class price. Class price is
derived from TempObject.

class client inherit TempObject
public type tuple(name : string)
end;

class tenant inherit client
public type tuple(profession : string)
end;

class owner inherit client
public type tuple(bank_account : string)
end;

class price inherit TempObject
public type tuple(price : integer)
end;

class property inherit TempObject
public type
tuple(prices : set(price),
street : string,
city : string)
end;

So far, the types of the collections have been defined. The next step is to implement the
collections as given in the schema depicted figure 5.1. In O, a collection of objects is implemented
as a named value of type set. As mentioned earlier, objects which belong to a named value are
persistent.

In TOM, collections are objects and, in the case that they are temporal, have a lifespan. This
can be modeled in Os by deriving a temporal collection class from class TempObject.

class client_collection inherit TempObject
public type
tuple(extent : set(client))
end;

Now the temporal collection Clients can be defined to be a named value of type
client_collection:

name Clients : client_collection;

In this case, collection Clients is timestamped similar to the temporal collections in the TOM
model. Members of collection Clients are added to attribute extent. In order to keep the following
examples of queries as simple as possible, non-timestamped collections will be used, though.

Example 6.3 In 02, we implement the collections depicted wn figure 5.1 as named values which
contain sets of temporal objects:

name Clients : set(client);
name Tenants : set(tenant);
name Owners : set(owner);

6.3. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM USING Os 113

name Properties : set(property);
name Rented : set(property);
name Available : set(property);
name Renovating : set (property);
name Residences : set(property);
name Offices : set(property);

With these named values, it is possible to store timestamped objects. The next section shows
how associations can be implemented.

6.3.5 Temporal Associations

Temporal associations can be implemented in O similarly to temporal collections. Classes —
derived from class TempObject — are specified which contain reference attributes to source- and
target-objects. Then, associations are defined as named values.

Example 6.4 [In the example schema depicted in figure 5.1, two associations are defined. Associ-
ation Quns relates objects in source collection Owners with objects in target collection Properties,
expressing which client classified as an owner owns which property. The relationship specifying who
1s renting which property is modeled with an association Rents, relating objects in source collec-
tion Tenants with objects in target collection Rented. Fach relationship contained in one of these
associations then is an instance of a class own or rent, respectively.

class own inherit TempObject
public type
tuple(source : owner,
target : property)
end;

class rent inherit TempObject
public type
tuple(source : tenant,
target : property)
end;

Now we create named values containing the relationships between owners and properties and tenants
and properties:

name Owns : set(own);
name Rents : set(rent);

In the TOM model, associations are objects and thus timestamped. Similar to the approach
for collections presented in section 6.3.4, timestamped associations could be created.

6.3.6 Temporal Constraints

There are several kinds of constraints which are defined in the TOM data model and supported in
the DBMS TOMS. Model inherent constraints such as the (temporal) subcollection relationship,
the temporal association constraint, (temporal) referential integrity, the temporal member type
constraint and visibility have been described, and on the other hand wuser-specified constraints
such as (temporal) partition, cover, intersection and cardinality constraints. As mentioned in
section 6.2.4, the TOMS DBMS supports these constraints directly and checks them at commit
time.

114 CHAPTER 6. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM

O3, however, does not support any kind of constraints. Constraints have to be provided by the
application programmer, for example, in form of functions and methods. During an update of the
database, these methods then are used to check the consistency of the modified database. This
means that in O,, all the constraints defined in TOM have to be implemented by the application
programmer.

6.3.7 Operations on Lifespans

So far, the data structures have been described to store time-varying data in Os. The next step is
to come up with functions which refer to the object timestamps and perform temporal calculations
on them. As mentioned before, they are implemented as methods of class TempObject.

Basically, the methods T_INTERSECT, T_MINUS and T_UNION are supported to write queries equiv-
alent to those that can be expressed using the temporal algebra operations introduced in sec-
tion 6.2.5.1. Additionally, temporal comparison predicates such as meets and overlaps as proposed
by [All83] are supported. The signatures of these methods which are part of class TempObject are
the following:

class TempObject inherit Object
public type
tuple (VALID : set(Interval),

KEY : integer)
method
public T_INTERSECT(T : set(Interval)) : set(Interval),
public T_MINUS(T : set(Interval)) : set(Interval),
public T_UNION(T : set(Interval)) : set(Interval),
public T_MEETS(I1 : Interval, I2 : Interval) : boolean,

public T_OVERLAPS(I1 : Interval, I2 : Interval) : boolean,

end;

Operations T_INTERSECT, T MINUS and T_UNION have a single argument — a set of intervals.
The second implicit argument to these operations is attribute VALID of the object itself. The
comparison predicates are implemented as functions on two wntervals, returning a Boolean value.

With these methods, it is possible write temporal queries in O: OQL. In the following, the
queries discussed in examples 5.8 and 5.9 are expressed in O» OQL using the methods specified in
class TempObject.

Example 6.5 What is the history of tenants renting one of Herbert’s properties? An OQL query
calculating the corresponding result looks like

select t
from t in

(select tenant (VALID r.T_INTERSECT (o.VALID),
KEY r.gource.KEY,
name r.source.name,

profession : r.source.profession)
from o in Owns, r in Rents
where o.sgource.name = "Herbert"
and o.target = r.target)
where t.VALID !'= set();

This OQL query, for example, returns the two objects shown in figure 6.4.

The OQL query in example 6.5 explicitly calculates the resulting valid-time periods. First, those
relationship instances in association Owns are selected whose source objects refer to Herbert. This

6.3. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM USING Os 115

Figure 6.4: Resulting tenant objects of the temporal query given in example 6.5

way the properties owned by Herbert (o.target) are found. These properties then are used to find
the relationship instances in association Rents referring to one of Herbert’s properties (o.target =
r.target). New resulting tenant objects are created and initialised with the attribute values of the
source objects selected from association Rents (r.source). The valid-time periods of the resulting
tenant objects are calculated by intersecting the valid-time period of the owner relationship with
the valid-time period of the rent relationship (r.T_INTERSECT(o0.VALID)). In the case that an
empty valid-time period results, the tenant is renting the property during a time period it was not
owned by Herbert. Thus, those objects from the resulting tenant objects are selected which have
a non-empty valid-time period.

The next query uses temporal negation. Additionally, it shows how attribute value histories
have to be treated to get correct query results. Resulting objects are shown in figure 6.5.

Example 6.6 We would like to find those residences and the corresponding time period during
which no higher priced offices exist. An OQL query calculating the corresponding result is

select property(VALID : r.VALID,
KEY : r.KEY,
prices : select pl
from pl in (select price(VALID : p2.T_INTERSECT (r.VALID),
KEY : p2.KEY,
price : p2.price)
from p2 in r.prices)
where pl.VALID !'= set(),
street : r.street,
city & r.city)
from r in
(select tuple(VALID : r.T_MINUS
(flatten
(select r.T_INTERSECT(pl.T_INTERSECT(p2.VALID))
from o in Offices, pl in r.prices, p2 in o.prices
where pl.price < p2.price)),

KEY r.KEY,
prices : r.prices,
street : r.street,
city r.city)

from r in Residences)
where r.VALID != set();

116 CHAPTER 6. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM

Figure 6.5: Resulting property objects of the temporal query given in example 6.6

The query in example 6.6 turns out to be rather complicated. In the from-clause of the
outermost query, those property objects from collection Residences are gathered for which no
higher priced office exists, together with the corresponding time period. This is done the following
way: First, a residence object r from collection Residences is picked. In the select-clause of this
subquery those price objects of offices are selected which are higher than a price of the residence
object r. Intersecting their valid-time periods returns the time period during which a higher priced
office exists with respect to residence r. This is done for all objects o in collection Offices. The
result of this is a set of sets of intervals. This result is flattened into a set of intervals, containing
those time periods during which higher priced offices exist with respect to residence r. Subtracting
these time periods from the valid-time period of r results in those time periods during which no
higher priced office for residence r exist.

Thus, the subquery in the from-clause returns for each residence object in collection Residences
a tuple containing the corresponding attribute values plus the resulting valid-time period. Due to
the subtraction of valid-time periods, the result of this selection contains residence objects with
valid-time periods which are subsets of their visibilities in collection Residences — these objects
are seen only during certain time periods of their actual visibility in the collection. This means
that the attribute value histories of these objects also have to be limited to the restricted visibility.
This is done in the subquery of the outermost select-clause. There, new property objects are
created having the same attribute values as the resulting tuples from the outermost from-clause.
The attribute value history of attribute price, however, is temporally restricted to the time period
of the resulting tuples of the outermost from-clause.

6.4 Summary

In this chapter, two different approaches to implementing the temporal object data TOM have
been described. First, it was shown how the data model can be implemented directly. Everything
is implemented from scratch, and a new query, data definition and modification language has to be
supported. This is the work of a DBMS engineer. The single-user DBMS TOMS is such a direct
implementation of the TOM data model. It uses files for persistence and supports transactions.
Second, the approach of using the data model of an existing DBMS directly to implement the
temporal object data model TOM has been investigated. It 1s possible to extend the existing
object-oriented DBMS O, to store temporal data and calculate complex temporal queries. Thus,
it is not necessary to extend a temporal object-oriented query language syntactically to express
temporal algebra operations. Temporal algebra operations can be expressed using non-temporal
algebra operations together with methods. This means the data model of the DBMS is used as-is.
This approach resembles the implementation of an application which is based on the DBMS — in

6.4. SUMMARY 117

this case the object-oriented DBMS Q3. These two approaches obviously differ in how much the
DBMS supports the implementation of an application handling time-varying data and how much
is left to the application programmer.

There are several obvious drawbacks when implementing an ADT for time, however. The
examples 6.5 and 6.6 show that it is possible but quite difficult to write temporal queries in Os
OQL. The application programmer has to know exactly how the temporal queries have to be
formulated using the methods of class TempObject. The non-temporal queries he usually writes
look totally different from their temporal counterparts.

It is much easier just to specify that all algebraic operations should be evaluated temporally by
writing a special keyword in front of a legal non-temporal query, the approach used for ATSQL2 and
also for the query language of TOM. This is not only less error prone and easier for a programmer
to understand, but also helps in migrating non-temporal to temporal queries.

Constraints are used to define which states of a database are legal. By adding a time dimension
to data, constraint checking is also influenced. Using the DBMS O, the user or application
programmer has to write methods or functions which check the constraints when attribute values
are updated. It would be useful, however, if general constraints were supported by the DBMS
directly.

Temporal DBMS have to be able to store and manage huge amounts of data since data is not
deleted physically anymore. Besides enhancing the expressive power, temporal operations also
increase the complexity of query processing. This means that accessing and querying temporal
data need to be optimised in order to provide reasonable answer times. Additionally, efficient
constraint checking should be supported. Object-oriented DBMS, extended with time functions
and temporal comparison predicates, cannot make use of optimisation techniques for temporal
data. They simply do not know about the temporal semantics of the data and functions and how
they could be exploited for optimisation. As was shown in the case of temporal relational databases
(for example, in [EWK93b, Kol93, LM93, Seg93]), adding temporal data structures and operations
to the system allows them to be used in optimisation strategies.

Thus, the drawbacks of the ADT approach are the complexity of temporal queries, the specifi-
cation of temporal constraints which 1s left to the user, and the lack of using the special semantics
of time for query optimisation.

We argue that the form of extensibility provided by current object-oriented DBMS is not
sufficient enough to support temporal databases. What would be good to have additionally are,
for example, extensible object identifiers, extensible query languages and the possibility to overwrite
algebra operations. These features, however, have to be implemented at lower levels, for example,
within the OsEngine. Concepts like these would help to implement temporal databases with non-
temporal object-oriented database management systems, but they would not be restricted to them.
Applications using spatial databases or versioning could also be supported.

118 CHAPTER 6. IMPLEMENTING THE TEMPORAL OBJECT DATA MODEL TOM

Chapter 7

Comparing the Different
Timestamping Approaches

So far, several approaches for temporal data models, from relational to object-oriented ones; have
been discussed. Chapter 3 introduced different proposals found in the temporal database literature.
Chapter 4 then described an approach which focused on generalising the query, data modification
and constraint specification language of SQL. The data structures, however, were extended with
special timestamp attributes. Additionally, it was shown how this language was implemented. In
chapter b, a new temporal object data model was proposed which generalises the underlying non-
temporal object data model in all aspects — the data structures, the algebra operations and the
constraints. The resulting temporal data model is more general than the ones seen before, since it
not only supports timestamping attribute values but anything which i1s an object — for example,
collections, constraints, and even types, methods and databases.

In this chapter, these different approaches are compared with each other with respect to their
data structures, and it will be shown that the various proposals of temporal data models are actually
subsumed in the temporal object data model TOM. First, an evolutionary path of temporal data
models from relations to nested relations, complex object and object-oriented data models is given,
discussing the different forms of timestamping in a general way. Next, the proposals for temporal
data models introduced in this thesis are looked at again with respect to how they timestamp data.
Then the reasons why TOM is a more general and orthogonal temporal data model than the other
ones are identified. Additionally, it is motivated why timestamping constructs such as collections
and constraints with both valid time and transaction time is a desirable feature which should
also be considered in temporal data models. It will be obvious then that besides the previously
discussed orthogonality of valid time and transaction time in query languages, there is also a notion
of orthogonal application of timestamping data. Last, proposals of how this can be achieved in data
models using the type extension approach for timestamping data will be discussed.

7.1 Temporal Data Model Evolution

In this section, the paradigms of different temporal data models are described according to the
evolutionary path of non-temporal data models given in [SS91]. [SS91] shows a unified view
of the evolution from relations through nested relations and complex objects to object-oriented
data models. This view is used in the following to describe in a uniform and general way the
different possible approaches of timestamping data. The evolutionary path then is extended with
an additional step from the type based data models to object based data models where objects
are allowed having several types simultaneously. It will be shown that besides TOM, all proposed
temporal data models actually extend existing non-temporal data models on the type level by
adding special timestamp attributes.

119

120 CHAPTER 7. COMPARING THE DIFFERENT TIMESTAMPING APPROACHES

7.1.1 Data Types and Type Constructors

In the following subsections, a given set T of atomic domains or data types is assumed:
T = {string, integer, float, real, date, ...}.

Additional to these basic data types, data models support data type constructors such as set, bag,
list and tuple. The set constructor allows the construction of a data type consisting of a set of
objects of a specific type without duplicates. Hence, an instance of the data structure set{ Type)
contains objects of type Type. Type constructor bag also constructs a collection of objects of a
specific type, but, in contrast to the set constructor, allows duplicates. With the list constructor,
an ordered list of objects can be defined. These data type constructors thus are used to build more
complex data structures out of either atomic types or other complex types.

In the following, the different temporal data models will be discussed with respect to valid time.
Their extension with transaction time is straightforward.

7.1.2 Temporal First Normal Form Relations

First normal form relations are sets of tuples. This means that only the strict sequence of a set
constructor applied to the tuple constructor is allowed. The relational model does not offer the
set and tuple constructors as separate constructors. The domains of attributes must be atomic,
and the relational type constructor set (tuple (..)) can be applied only once per constructed
type. While the relational data model [Cod70] specifies a relation to be a set of tuples, a relational
DBMS usually also supports bags of tuples.

As we have seen, timestamping data in first normal form relations is only possible on tuple level.
A tuple can be extended to store time intervals, for example, a valid-time interval. A time interval
is modeled as two attributes, for example, VTS and VTE, containing the starting and the ending
time of a valid-time interval. The query language operations and constraint checker then refer to
these special time attributes. Thus, the data model relies on assumptions on the type system.

Chapters 2 and 3 mentioned the problems of vertical and horizontal temporal anomaly. Re-
call that the forced splitting of a logical unit of information into more than one tuple is called
the vertical temporal anomaly. The horizontal temporal anomaly addresses the problem that at-
tributes in a tuple change their values asynchronously which, if tuple timestamping is applied,
either leads to data redundancy or the relation has to be decomposed. Due to the vertical tempo-
ral anomaly, the special operation coalescing was introduced to calculate maximal time intervals
for split information.

Example 7.1 A type (or schema) Persons of a INF relation, timestamping tuples with valid-time
wintervals, may be defined as

type Persons = set (tuple (Name : string,
Birthdate : date,

.

Address . string,
VTS : date,
VTE : date))

Fach attribute 1s valid during the same time period. Attribute Birthdate contains user-defined
time values.

7.1.3 Temporal Nested Relations

Tuple components in first normal form relations are of an atomic type, for example, of type integer
or string. Nested relations still support only the strict sequence of a set (or a bag) constructor
applied to a tuple constructor, as INF relations do. However, they allow the use of non-atomic

7.1. TEMPORAL DATA MODEL EVOLUTION 121

data types for tuple components. Non-atomic data types can be constructed using again the
sequence set (tuple (..)), where the tuple components either are atomic or non-atomic. This
means that the type constructor sequence set (tuple (..)) may be applied any number of times
in a constructed type.

Nested relations allow, for example, the modeling of attribute histories as time sequences, where
each attribute history is a relation containing the attribute together with a timestamp. The set
of attribute values together with their timestamps represents the attribute history. This resolves
the vertical temporal anomaly since it 1s now possible to store time-varying data about a real
world entity in a single tuple. The horizontal temporal anomaly can also be avoided, since each
attribute can be timestamped independently from other ones. Additionally, relations themselves
may be timestamped by nesting a relation into another one having a timestamp expressing when
the nested relation itself was valid.

Timestamps may be time intervals which are modeled as two attributes, for example, VTS and
VTE for valid time, or it is now possible to store sets of time intervals which are stored in a nested
relation.

With attribute timestamping, the notion of homogeneity becomes important. Recall that ho-
mogeneity demands that all tuples of a relation are homogeneous. A tuple 1s homogeneous, if all
attribute value histories in the tuple cover the same time period. Inhomogeneity corresponds to
the presence of null values, since time periods are allowed during which an attribute does not have
a specific value.

Example 7.2 The type (or schema) Persons of a nested relation, using attribute timestamping
with valid time, can be defined as

type Persons = set (tuple (Name_History : set (tuple (Name : string,
VTS : date,
VTE : date)),

.

Address_History : set (tuple (Street : string,

City : string,
VTS : date,
VTE : date))))

Note that it is now also possible to store a more complex form of addresses than in example 7.1.
Further, instead of time intervals, the timestamps can also be modeled as sets of time intervals, for
example

type Persons = set (
tuple (Name_History : set (
tuple (Name : string,
Valid : set (
tuple (VIS : date,
VIE : date)))),
-)

The move to nested relations with timestamps has major consequences also for a temporal
query and modification language and temporal constraints. As pointed out earlier, in temporal
data models using type extension, the query and data modification language and the constraints
refer to the special time attributes during their evaluation. Since nested relations contain nested
timestamps, these parts of the data model have to be adapted accordingly.

Besides attribute and tuple timestamping, there 1s another approach which does not appear in
temporal database literature in this form. It is the combination of tuple and attribute timestamp-
ing. For example, the temporal object data model TOM does not assume homogeneity. The notion
of visibility 1s used which — with respect to a nested relation — means that each tuple represents a

122 CHAPTER 7. COMPARING THE DIFFERENT TIMESTAMPING APPROACHES

real world entity and has a time of existence attached to it. Additionally, each attribute is time-
stamped allowing the storage of the different attribute value histories of the entity. An attribute
then is only visible during the existence of the entity. The following example uses a combination
of tuple and attribute timestamping.

Example 7.3 The type (or schema) Persons of a nested relation, using a combination of tuple
and attribute timestamping with valid-time temporal elements, can be defined as

type Persons = set (
tuple (Name_History : oset (
tuple (Name : string,
Valid : set (
tuple (VIS : date,
VIE : date)))),
Address_History : set (
tuple (Street : string,
City : string,
Valid : set (
tuple (VTS : date,
VIE : date)))),
Valid : set (tuple (VIS : date,
VIE : date))))

The valid-time intervals in attributes Name History and Address History are used to store the
history of the names and addresses for a person. The outer valid-time interval can be interpreted
as the lifespan of the person. Each attribute history then shall be restricted to the outer valid-time
timestamp of the tuple.

7.1.4 Temporal Complex Objects

Complex objects are built using any combination of type constructors. The strict sequence of a
set constructor applied to a tuple constructor is given up. Complex objects thus are more flexible
than nested relations with respect to what kind of data structures can be defined.

With respect to time-varying data, it is now possible to also timestamp constant valued at-
tributes. A timestamped constant valued attribute shall be an attribute which contains exactly
one value together with a time period, which is in contrast to attributes which store the history of
values in a set.

Since nested relations can be viewed as a restricted form of complex objects, complex objects
also resolve both vertical and horizontal temporal anomaly, and there is again a choice to either
use time intervals or sets of time intervals for timestamps.

Example 7.4 First, we define a type Timestamp which is a set of intervals. Then, the type
Persons of example 7.3 can be extended to the following complex object timestamped with valid
time:

type Interval = tuple (Start : date, End : date);
type Timestamp = set (Interval);

type Person = tuple (Name_History : set (tuple (Name : string,
Valid : Timestamp),

Address_History : set (tuple (Street : string,

City : string,

.

7.1. TEMPORAL DATA MODEL EVOLUTION 123

Valid : Timestamp),

Phone : tuple (Area_Code : integer,
Number . integer,
Valid : Timestamp),
Valid : Timestamp)

type Persons = set (Person);

Besides the timestamps we have already seen in example 7.3, attribute Phone which contains a
single phone number may also be timestamped. In the case that the phone number has a valid time
shorter than the one of the whole tuple, null values are assumed for the remaining time period.
Additionally, the type definition is split into two parts: the definition of types Person and Persons.
An object of type Persons contains a set of objects of type Person.

TOM supports the timestamping of collections (which are, for example, sets of objects). This
1s also possible in a complex object data model. In this case, however, the type of the set-valued
object has to be changed.

Example 7.5 According to the lifespans of collections supported in TOM, the set Persons may
also be timestamped. Using the type extension approach, we have to turn the set into a tuple :

type Persons = tuple (extent : set (Person),
Valid : Timestamp);

7.1.5 Temporal Object-Oriented Data Models

Nested relations and complex objects cannot directly represent non-hierarchical or recursive rela-
tionships [SS91]. The solution is to break up the recursion in type definitions by introducing names
for type instances and functions in addition to attributes. Naming instances means to introduce
unique object identifiers. Functions or object identifiers are used, for example, to reference the
extracted recursive part. These are essential features of object-oriented data models. Thus, the
problem of data containment is resolved by the use of references.

In an object-oriented data model, data can be timestamped on the same levels as complex
objects. Thus, temporal object-oriented data model also resolve both vertical and horizontal
temporal anomaly. Additionally, names (or object identifiers) and functions (or methods) may be
timestamped.

Example 7.6 The following type Department which is recursively defined on attribute Members

type DeptRelation = set (Department);

type Department = tuple (DNo : integer,
Name . string,
Members : set (tuple (Name : string,
Salary : integer
Dept : tuple (DNo . integer,
Name . string,
Members : ...,
Valid : Timestamp),
Valid : Timestamp)),
Valid : Timestamp);

can be broken up into

124 CHAPTER 7. COMPARING THE DIFFERENT TIMESTAMPING APPROACHES

type DeptRelation = set (Department);

type Department = tuple (DNo . integer,
Name . string,
Members : Staff,
Valid : Timestamp);

type Staff = set (Employee);
type Employee = tuple (Name . string,

Salary : integer,
Dept : Department,
Valid : Timestamp);

where Members and Dept contain references to named objects of type Staff or Department, given
the department or the employee, respectively. Note that for ease of reading, only tuple timestamping
1s applied. Attribute timestamping could be done as shown in the previous examples.

An object-oriented data model also must support the concept of specialisation. Specialisation
allows the reuse of a type definition and the creation of a new subtype which is more special than
its supertype. The subtype inherits all components of its supertype, maybe overwriting some of
the supertype’s functions, and it may contain additional components.

Example 7.7 The type definition of Employee in example 7.6
type Employee = tuple (Name . string,

Salary : integer,
Dept : Department ,
Valid : Timestamp)

was meant to contain all the attributes defined for a tuple in type Persons (as given in example 7.1),
extended by attributes Salary and Dept. Instead of repeating attributes common to both types, we
define them the following way:

type Person = tuple (Name . string,

Valid : Timestamp) ;

type Employee subtype Person = tuple (Salary : integer,
Dept : Department)

The rigid application of type constructors is gradually relaxed in the evolution from relational
to object-oriented data models. Usually, object-oriented data models and systems restrict objects
to be an instance of only a single type at a specific time point. To be able to support role modeling,
a data model should allow objects to be dressed with several types simultaneously, however. We
consider giving up this restriction and using a different form of timestamping as a next step in our
evolutionary path, since it adds additional flexibility to the data model.

7.1.6 A Temporal Collection Model

Most object-oriented data models assume an object to have a single type. For role modeling,
however, a data model must allow objects to be dressed with several types simultaneously. This

7.1. TEMPORAL DATA MODEL EVOLUTION 125

is possible in the non-temporal collection model OM and its temporal generalisation TOM. In the
temporal collection model, each role of an entity then has its own history.

In general, an object-oriented data model supports the definition of object types. A class then
is the extent of a type, containing all objects of the same type. Each object is member of exactly
one class which it is assigned to at creation time.

The collection model OM and its temporal generalisation TOM distinguish between collections
and classes. A collection is a semantic grouping of objects. An object may be a member of several
collections. The members of each collection have to be dressed with the corresponding member
type of the collection. Additionally, the object 1s a member of the extents of the types with which
the object is dressed. This distinction thus separates between the representation and the semantic
grouping of objects.

Name: John Name: John

Birthdate: 1950 Birthdate: 1950

Salary: 10 000 Rank: 8
Club: TCR

Staff [employee]

! TennisTeam [tennisplayer]

Figure 7.1: An object viewed through different roles

In OM, an object is viewed through a collection, thereby displaying the corresponding attribute
values as specified by the member type of the collection. The object is referred to by its unique
object identifier. In other words, we take an object identifier and look at it through different roles,
and, in the case that the object takes part in a role, it shows the corresponding attribute values.
This is depicted in figure 7.1, where an object 1s viewed either as a member of a staff or as a
member of a tennis team.

In temporal data models using the type extension approach, the temporal algebra operations
and the constraint checker refer to special timestamp attributes. These operations thus are directly
depending on specific types and the presence of specific attributes in the objects in discourse. The
approach used in the temporal object data model TOM does not extended the data structures but
focuses on the object identifier. The natural extension of an object identifier to support time is the
temporal object identifier. As shown in figure 7.2, the temporal object identifier is separated from
the state and behaviour of an object. It references a specific object with its overall lifespan which
then can be viewed in different roles. Thus, TOM does not timestamp the values of an object and
then has to calculate the union of all timestamps of values of this object in order to find out during
which time the object existed, but it timestamps the object itself with its overall time of existence
and keeps track of the history of its values separately.

The temporal object identifier naturally extends the timestamping of data to other constructs of
the model. As we have seen, it automatically supports the timestamping of collections, constraints
or even types and databases. With temporal object identifiers, it is still possible to timestamp the
same data structures as in the models discussed in the previous sections.

The approach of timestamping the existence of an object rather than the validity of its property
values is more natural. The distinction between lifespans of objects and time periods during which
property values of these objects are valid actually represents the way we deal with time in the real
world. When we think of persons and their lifespans, we usually relate the date of birth and the
date of death to the lifespan of a person and not the union of all valid time periods of his different

126 CHAPTER 7. COMPARING THE DIFFERENT TIMESTAMPING APPROACHES

Temporal
Object Identifier

State

Behaviour

Figure 7.2: Components of a Temporal Object

addresses during his life.

In TOM, objects are created separately from type specifications. An object may be dressed
with different types simultaneously. In the following example, an explicit dress operation is used
which may be applied several times with different types to the same object.

Example 7.8 After creating the necessary types and collections, we can create an object John,
dress it with two different types, for example, type employee and type tennisplayer, and initialise
it with corresponding attribute values. Object John then is inserted into both collections Staff and
TennisTeam.

create type person(Name . string,
Birthdate : date);

create type employee(Salary : integer,
Dept : department) subtype of person;

create type temnisplayer(Rank : integer,
Club : string) subtype of person;

create collection Staff type employee lifespan { [1980 - inf) };
create collection TennisTeam type tennisplayer lifespan { [1991 - 1995) };

create object John lifespan { [1950 - inf) };
dress object John with type employee;

dress object John with type tennisplayer;

insert object John to Staff during { [1987 - inf) };
insert object John to TennisTeam during { [1992 - 1995) };

It is possible to support the timestamping of sets, bags, lists and other complex objects also
in complex object and object-oriented data models. However, there are several advantages to
the approach of using temporal object identifiers. First, the orthogonality with which different
constructs in the data model such as collections, constraints and so on are timestamped follows
automatically. Second, the algebra operations simply rely on the temporal object identifier and
not on the data structure of the state of the object. As it was stated for temporal nested relations,
the possibilities of timestamping data in data models supporting complex types also have major
consequences in terms of changes to the query language and constraint evaluation, for example.
Further, if a set is turned into a temporal object in TOM, it is timestamped without turning it first
into a tuple with additional timestamp attributes. Third, necessary constraints are automatically
supported and tested. For example, a set of temporal objects should contain only objects during
the set’s own lifespan. In TOM, is called the visibility. An extension approach which allows the
timestamping of sets, bags and lists should also test such constraints.

7.2. DIFFERENT FORMS OF TIMESTAMPING DATA 127

| Paradigm | Model | Timestamping |
[JMS79] Tuple
[Cli82, CW83] Tuple
[Sno84, Sno87, Sno93] Tuple
INF [Ari86] Tuple
[NASS, NA89, NA93] Tuple
[Sar90b, Sar93] Tuple
[SBJS96b, SBJS96a) Tuple
[CT85, Tang6] Attribute
NFNF [GV85, Gad86, Gad88, GN93J] Attribute
[TG89, Tan93] Attribute
[CT85, CC87, CCI3) Tuple/Attribute
[KRS90] Tuple
[Wuu91] Tuple
[SCI1] Tuple
[KS92b] Tuple
Complex Object, OO [EW90, EWK93a] Attribute
[RS91, RS93] Attribute
[GO93] Attribute
[BFG96] Attribute
[DW92, WD93] Tuple/Attribute
00 [SN97a, SN97h, SN97c] Object Identifier

Table 7.1: List of the different temporal data models

7.2 Different Forms of Timestamping Data

The temporal database literature only considers two forms of timestamping data, namely attribute
and tuple timestamping. Object timestamping, as 1t usually appears in the literature, corresponds
to tuple timestamping. This is more in line with complex object rather than object-oriented data
models.

In this section, the different approaches to timestamping data are compared and the models
presented in chapters 3, 4 and 5 are discussed with respect to this issue.

Table 7.1 lists the temporal data models discussed in this thesis with respect to the paradigm
they are based on and what kind of timestamping is used. There are two models which support
both tuple and attribute timestamping. As we have seen in chapter 3, [CT85, CC87, CC93] time-
stamp attributes within the relation schemas, expressing when they were part of the schema. The
tuples then are timestamped with a time period specifying when the attribute values were valid.
[DW92, WD93] support either tuple or attribute timestamping, however independently from each
other. Both of the approaches do not discuss a possible combination of both tuple and attribute
timestamping as it was used in example 7.3, however.

Except TOM [SN97a, SN97b, SN97¢], all other proposals extend the underlying type system
by either applying attribute or tuple timestamping. All first normal form (INF) relational data
models use tuple timestamping, which i1s no surprise. On the other hand, the non first normal
form (NFNF) relational data models use mostly attribute timestamping. Complex object and
object-oriented (OO) temporal data models use either attribute or tuple timestamping.

The following table summarises all possible kinds of timestamping data for the different kinds
of data models, as they were discussed in section 7.1:

128 CHAPTER 7. COMPARING THE DIFFERENT TIMESTAMPING APPROACHES

| Model | Type Constructors | Timestampable Units |
Relational Model relation Tuples
Nested Relations relation Tuples,
Attributes,
Relations
Complex Object Model, set, bag, list, Tuples,
Object-Oriented Data Model tuple Attributes,
Sets, Bags, Lists,
Functions,
Object Identifiers

The relational data model supports a single data structure — the relation. As we have seen, the
only construct to timestamp in this model is the tuple. Nested relations are more flexible, they allow
timestamping not only tuples, but also attributes and relations. Attribute histories are actually
relations, containing the timestamp and the attribute. A set or a bag of tuples — a relation — may
be timestamped by nesting it into another relation and adding a timestamp attribute. Complex
object and object-oriented data models support timestamping of any data structure composed of
the type constructors and base types. To do this, however, a data structure has to be embedded
into a tuple.

For a general temporal object-oriented data model, we propose that i1t should allow that any
part of a type definition may be timestamped, that not only data but also meta-data is treated as
time-varying data, and further that any operation of the model may refer to this time information
and use it for calculations. This is an orthogonal approach to timestamping data. None of the
proposed temporal data models in chapters 3 and 4 can be considered orthogonal in this sense.
The temporal data model TOM, however, supports all kinds of timestamping listed. Additionally,
due to the temporal object identifier, it also automatically allows the timestamping of meta-data
and thus supports timestamped collections, types and so on, and it features a temporally complete
query language which treats valid time and transaction time orthogonally.

The generality and orthogonality of TOM 1is based on two things. First, the underlying non-
temporal data model OM and its implementation OMS [NW97] specify concepts such as collections,
types, methods and so on to be objects. In general, the focus 1s on the objects as an entity and
not on their properties. Second, the approach to using temporal object identifiers still supports
this distinction. The object — represented by the temporal object identifier — is concentrated on
and not its properties. In contrast to other object-oriented temporal data models, the concept
of 1dentity is still the main one when the step from non-temporal to temporal objects 1s made.
This concept does not apply for relational data models, where tuples are distinguished only by the
values they contain. Due to these aspects, the temporal object data model TOM has turned out
to be more general and orthogonal than other proposals, and we can say that TOM is a general
and orthogonal form of the other temporal data model proposals.

7.3 Timestamping Meta-Data

So far, the different possibilities of timestamping data have been discussed, and it was shown what
has been done in different proposals of temporal data models. We have seen that the temporal
object data model TOM uses an orthogonal approach to timestamp data. For example, collections
and constraints are also objects and thus may be timestamped with valid time and transaction time.
The introduction of a new general and orthogonal form of timestamping has given us the insight
that meta-data in general could also be timestamped with both time lines. This aspect has received
little attention in temporal database literature so far. Work with respect to timestamping meta-
data has focused on schema evolution, mainly with respect to transaction time [DT87, Rod92a,
Rod92b, CGS95, RS95].

In the following subsections, we discuss why timestamping meta-data with both valid time and
transaction time should also be supported in temporal data models and motivate the timestamping

7.3. TIMESTAMPING META-DATA 129

of constructs such as relations, views, constraints and types. A main reason why we argue that
both time lines should be supported is that if only transaction time is used to timestamp meta-
data, updates can be effective only from the time point they are executed. Updating earlier or
future database states is not possible. Additionally, the timestamping of relations, collections
and views with valid time allow the specification of when the concepts existed or were relevant in
the application domain. It is sometimes necessary, however, to update meta-data retroactively or
proactively. This 1s only possible with respect to valid time.

7.3.1 Timestamping Relations and Collections

Research in the temporal database area concentrated mainly on timestamping tuples or attributes.
Timestamping relations has received little to no attention. Usually, only a tuple or its attribute
values are timestamped. The relation of which it is member, however, does not have a timestamp
attached. This can be interpreted in several ways. Usually, it is assumed that the relation is always
valid (or stored, respectively).

Relations, however, are created and dropped just as tuples are inserted and deleted. Dropping
a relation thus can be considered to be handled in a similar way to deleting a tuple. For example,
if the user drops a relation, this means he does not want it to appear in the future database states
anymore. However, if he goes back to an earlier database state, it should still be visible. In the
case that the relation was deleted physically, this is not possible anymore. Thus, the relation itself
needs to be timestamped with transaction time. When creating a relation, the transaction time of
the relation is set to the time point the create statement is executed. In the case that the relation
is dropped later, the upper bound of the transaction-time interval is set to the time instant the
corresponding drop statement is executed. This way, the time period during which the relation
was stored in the database is kept track of, thereby still allowing access to the data stored in it.
Tuples in a dropped relation then may not be updated anymore.

What can be modeled when relations are timestamped with valid time? As we have seen in
the temporal object data model TOM, timestamped collections model the history and validity of
semantic groupings of entities. This is not possible in proposed temporal relational data models.
For example, the lifespan of collection Departments determines when the company was organised
in departments. Maybe at some point in time, the company is totally restructured and the depart-
ments are substituted by institutes. So, the valid-time interval of collection Departments expresses
when the company was organised in departments.

The discussion about timestamping relations of tuples or collections of objects with valid time
and transaction time shows that two different forms of deleting them have to be distinguished.
One form of deleting a collection is with respect to dropping it from the database, the other one
expresses when it stopped being valid in the real world. The time instant when a created collection
1s committed is the lower bound of the transaction time interval of this collection, whereas the time
instant of the commit of a drop statement corresponds to the upper bound. The lifespan of the
collection is the valid time of the collection, which can be modified.

As we have seen in chapter b, timestamping collections (and thus relations) also influences the
query language. It has to be taken into account that collections or relations may not exist during
the same time periods.

7.3.2 Timestamping Views

Views can be considered as virtual collections or relations, in contrast to base collections or base ta-
bles whose objects are actually stored in a database. Views derive their data from other collections
or tables according to a specified query.

Views are created and dropped just as base collections or relations are. With respect to valid
time and transaction time, this means that views should be treated the same way base collections
(or relations, respectively) are treated.

130 CHAPTER 7. COMPARING THE DIFFERENT TIMESTAMPING APPROACHES

7.3.3 Timestamping Constraints

In chapter 5, the idea of timestamping constraints with valid time has already been discussed.
Business rules change over time. To be able to model the evolution of these business rules, to
allow the modification of them with respect to past and future database states, and to support
different rules for the same data during different time periods, it should be possible to timestamp
constraints with valid time.

Since constraints are created and deleted, they should be timestamped with transaction time
as well. Constraints may be erroneous just as data might be. Since constraints may be used to
model business rules, it should be possible to find out how and when constraints were corrected.

7.3.4 Timestamping Types

As mentioned previously, most work on timestamping meta-data was done with respect to schema
evolution, for example, in [DT87, Rod92a, Rod92b, RS95, CGS95]. [RS95] discuss the integration
of schema evolution into TSQL2. They propose a schema R to contain the union of all attributes
which have been defined during the lifespan of R. A view function then maps R to a subset of the
attributes in a schema S; which 1s active at t. They argue that supporting valid time for schemas
1s not necessary, since schema evolution defines how reality i1s modeled by the database. TSQL2
thus only supports timestamping schemas with transaction time.

[CGS95], on the other hand, argue that storing valid time for schemas is necessary for applica-
tions requiring retroactive and proactive schema changes,; for example, when new encoding rules
for social security numbers are stated today, but they are effective from January, 1, 1995, or in two
months. We support their view. Obviously, there are cases which make it convenient to timestamp
types with valid time. Thus, a temporal DBMS should be general and also support valid time for

types.

7.4 Proposed Changes for Extension Approaches

In the previous section, it was motivated why it is useful to timestamp constructs such as collections
(or relations, respectively), views, constraints and types with both valid and transaction time. This
section discusses how this can be achieved in temporal data models which are based on the schema
extension approach.

Meta-data is usually stored, queried and updated using the data structures and language
supported by the DBMS. The mini-database storing the meta-data is called the system catalog
[EN94, HS95]. For example, in a relational DBMS, the system catalog is stored as relations and
allows DBMS routines and users to access them using SQL.

Thus, we propose that the system catalog shall store bitemporal meta-data. Additionally, con-
straints must be supplied which check that objects may only be inserted into a relation (or a
collection) during the valid time of the relation. A relation may only be modified when its transac-
tion time overlaps time instant now, otherwise it can be accessed just for querying. With respect
to types, the system has to make sure that a relation or a collection always is dressed with a type.
The query language has to be adapted if relations have a lifespan, as was shown, for example, in
chapter 5.

Temporal DBMS should, however, not only support temporal objects but also provide for non-
temporal ones. Since we propose to store all meta-data in bitemporal tables, we have to find a
way to deal with storing, for example, the meta-data of a non-temporal relation in a temporal
relation of the system catalog. In chapter 5, the handling of non-temporal objects as members in
a temporal collection has been discussed. The idea is to assume a non-temporal object to be valid
and stored in a database only at time instant now, where now moves along the time lines as time
passes. Thus, a non-temporal relation created in a bitemporal relational DBMS would be stored
in the system catalog as having a valid- and transaction-time interval [now <now].

7.5. SUMMARY 131

Example 7.9 A simple example for a meta-data relation storing the 1NF relation schemas ts
given below. It stores the relation name and the names of its attributes together with their types.
We timestamp the meta-data with both a valid-time interval [VTS <VTE) and transaction-time
interval [TTS <TTE).

Relation_Name | Attribute_Name | Attribute_Type | VIS | VTE | TTS | TTE
Employee Name string 1990 o0 1994 o0
Employee SSN integer 1990 1993 1994 1995
Employee SSN string 1993 o0 1995 o0
Employee Salary integer 1990 o0 1994 o0
Employee DepNo integer 1990 o0 1994 o0

Department Name string 1988 00 1994 00

Relation Employee was created in 1994, and data about employees is stored since 1990. In 1995,
the schema of relation Employee was modified. The type of the social security number stored in
attribute SSN was changed retroactively from integer (o string.

7.5 Summary

This chapter has discussed in a general way the different possibilities of timestamping data with
respect to the relational data model, nested relations, complex object and object-oriented data
models, independent of any proposed temporal data model. The difference of the approach used in
TOM to the extension approaches was then shown. Next, the general timestamping approaches to
the temporal data models introduced in this thesis were compared. It was mentioned that — with
the exception of the approach used in TOM introducing temporal object identifiers — attribute and
tuple timestamping are the only two timestamping approaches appearing in temporal database
literature. This chapter also showed that TOM actually subsumes the different proposals. Addi-
tionally, the proposal of temporal object 1dentifiers leads to an orthogonal approach of timestamping
data. One consequence of this is that TOM supports timestamping of collections, constraints and
so on. It then has been motivated why it makes sense to have meta-data timestamped. Last, it was
argued that timestamping meta-data should also be considered for temporal data models using the
extension approach, and a short description of how this can be achieved was given.

The main idea discussed in this chapter is that not only an orthogonal treatment of valid
time and transaction time in query languages is desired, but also an orthogonal approach to
timestamping data (including meta-data) using both valid time and transaction time. This idea
has received little attention so far in temporal database literature, and it is not explicitly supported
in any temporal data model using type extension in this generality. Supporting temporal relations
is not the only requirement to store temporal meta-data. Additionally, constraints have to be
supplied, which check, for example, that no tuple is inserted into a relation during a time period in
which the relation does not exist. In the case that relations are timestamped, the query language
has to take into account the lifespans of the relations in some way. The way this is dealt with in
TOM was described in chapter 5. Last, storing meta-data in bitemporal relations has to provide
for properly managing non-temporal relations, since they should still be supported in a temporal
DBMS. This means that non-temporal entities have to be stored in a temporal system catalog.

132 CHAPTER 7. COMPARING THE DIFFERENT TIMESTAMPING APPROACHES

Chapter 8

Conclusions

In this last chapter, the most important results of this thesis are summarised and the topics worth
investigating further are discussed.

Although a strong need exists for DBMS which are capable of storing, modifying and querying
time-varying data, there are no commercial systems available which support users and application
programmers in these tasks. Although there are quite some research results available with respect
to this topic, their impact to commercial DBMS is negligible. Why is it like that, and in what
direction will DBMS go in the future? The main question is whether temporal support in a DBMS
is seen as supporting a special class of applications and thus would mean that additional extensions
or a special form of DBMS should be implemented for such support, or if it is accepted that the class
of temporal applications actually is the main class and thus DBMS should be enhanced in general
to support time-varying data. Other issues might be the complexity of the proposed models and
approaches or their lack of generality. Further, maybe a standard is needed to motivate companies
to enhance their DBMS to support time-varying data.

This thesis 1s a contribution towards general and orthogonal concepts for supporting time-
varying data in DBMS. Further, while — with respect to commercial temporal DBMS — major
changes cannot be expected during the next months and maybe even years, other ways have to
be found to support applications dealing with temporal data. Thus, another contribution of this
thesis is the investigation and discussion of different approaches to achieving such support using
existing database technology. Two extensions were discussed — the layered approach in TimeDB
and the specification of an ADT — which can be seen as solutions for the time being.

8.1 Summary

Different levels of support for time-varying data in DBMS can be identified. The question is what
kind of support users and application programmers would like to have to manage time-varying
data. Do they want to implement most of the temporal aspects in their applications on their own,
thereby having to accept that the DBMS may not make use of the special semantics time has, for
example, for optimisation? Do they want additional functionality supported by a non-temporal
DBMS, such as a time data type plus the essential functions for time calculations? Or do they want
a specialist DBMS which supports features such as a temporal query and modification language
and temporal constraints?

With respect to this question, four possibilities to implement temporal database applications
were 1dentified in chapter 1. These are

e Use a type date and implement all temporal semantics in the application program

e Specify an ADT for time which is the basis in temporal applications to timestamp and query
the temporal data

133

134 CHAPTER 8. CONCLUSIONS

e Extend a non-temporal data model to support time-varying data
e Generalise a non-temporal data model into a temporal one

The advantage of the first two approaches is that they do not need any changes to be made to
the data model and system used. While these approaches in some way support the data structures
and functionality needed to manage time-varying data, they cannot, however, exploit the advantage
of the special semantics time has, for example, for optimisation.

The last two approaches can only be achieved by modifying both the data model and corre-
sponding systems. With respect to these approaches, we argue that if changes are done to both
the data model and corresponding systems, they should be general and orthogonal, supporting
temporal data structures, temporal operations and temporal constraints without any unnatural
restrictions. In other words, we support the generalisation approach since it considers all con-
structs and concepts of a data model.

In this thesis, the second, third and fourth approach listed above have been investigated.
With respect to the second approach, it was shown in chapter 7 how an ADT can be used to
implement temporal database applications. The ADT was implemented using the object-oriented
DBMS O,. Additionally, this ADT was used together with the non-temporal query language OQL
to specify complex temporal queries. With respect to the third approach, chapter 4 described
the implementation of the temporally complete language ATSQL2 which is based on extending
relation schemas to store time-varying data. The resulting bitemporal DBMS TimeDB supports a
temporal query language, a temporal data definition and modification and a temporal constraint
specification language. Since the source code of a relational DBMS is not available, TimeDB was
implemented as a front-end to the commercial DBMS Oracle. With respect to the fourth approach,
a temporal data model based on the generalisation approach has been described in chapter 5. The
non-temporal object data model OM was generalised into its temporal counterpart TOM. Both OM
and TOM support object role modeling which requires that objects may be dressed with several
types simultaneously. Additionally, the prototype system TOMS was implemented to verify the
ideas and the design of the temporal object data model TOM.

When extending or generalising a non-temporal data model, the most important decision to
make is what kind of timestamping shall be used. Is tuple or attribute timestamping or a combi-
nation of it used, or is there another approach possible? The approach of timestamping used in a
temporal data model is essential, since it has major consequences on both the operational part and
the constraints supported in a data model and system. The problem of the extension approach
which uses special time attributes to timestamp data is that both the temporal operations and
temporal constraints refer to these attributes. If the timestamps are nested, for example, as it is
possible in temporal nested relations, temporal complex object or temporal object-oriented data
models, either both the operations and constraints have to be flexible enough to be able to access
these nested timestamps, or timestamping has to be restricted to a single level only.

In this thesis, a new approach to timestamping data — the temporal object identifiers — has
been introduced which separates the timestamp from the data structure. With this approach, a
simple way has been found to specify where timestamps may appear, thereby not restricting the
level of nesting. In the temporal data model TOM, both temporal algebra operations and temporal
constraints refer to the object identifiers.

Chapter 7 has shown that TOM actually can be seen as a general and orthogonal form of the
temporal data models using the type extension approach. By using temporal object identifiers, not
only data but also meta-data may be timestamped. The advantages of timestamping meta-data
were discussed and it was argued that all temporal data models should extend their timestamping
approach to meta-data with both valid and transaction time.

In chapter 1, the goal of designing a general, generic and orthogonal temporal data model was
stated. The model should be generic in the sense that it is independent of any specific type system.
General means that data structures, operations and constraints of the non-temporal data model
OM are generalised into temporal data structures, temporal operations and temporal constraints,
using the notion of snapshot reducibility to define their semantics. Further, the model should be

8.2. FUTURE WORK 135

orthogonal in two senses. First, anything which is an object (entity, collection, constraint, type or
even database) may be timestamped. Second, valid time and transaction time should be treated
as orthogonal time lines, having the same set of operations defined on them. The temporal object
data model TOM fulfills all of these requirements. It is defined independent of any type system
and thus is generic, and it generalises the data structures of the underlying data model OM,
its algebra operations and constraints into temporal ones. Additionally, as it was discussed in
chapter 7, the use of temporal object identifiers leads to orthogonal timestamping. Further, the
algebra operations defined in chapter 5 for valid time can be used with the same semantics for
transaction time.

8.2 Future Work

There are several aspects of this thesis which we believe are worth further exploration. First, tem-
poral data models using the extension approach could be generalised. For example, the TimeDB
system could be enhanced with temporal meta-data relations as described in section 7.4 and the
relation schemas, constraints and relations could be timestamped with both valid time and trans-
action time.

Second, the ideas developed in the prototype system TOMS could be incorporated into the
object-oriented DBMS OMS. Changes to the notion of an object identifier, to the algebra and
the constraints would be necessary. Additionally, it could be extended with transaction time to
support bitemporal objects and a bitemporal query, modification and data definition language.

With respect to the incorporation of the ideas of TOM into the object-oriented DBMS OMS,
an important issue for further investigations concerns time and methods. In OMS, methods are
objects and thus may be timestamped as well. A general question is whether or not methods
should also be timestamped and what that would mean. Methods simply returning values, for
example, calculating the age of a person from his birthdate, can be seen as dynamically calculated
attribute values. This means that such methods could be treated like attribute values. However,
timestamping methods with valid time and transaction time introduces problems if the methods
have side effects. A method calling a program, for example, a WWW browser referring to a specific
homepage, should only be allowed to be used if its valid time and/or transaction time overlaps time
instant now, because this expresses that the method is both valid and stored in the database at
the time instant it is called. Otherwise, the method (meaning the access to the specific homepage)
1s either not valid anymore or it was deleted and thus should not be used.

Third, this thesis focuses only on managing time-varying data. The data models introduced
and proposed are specialist models since they are restricted to temporal data. However, instead
of supporting specialist DBMS handling, for example, temporal or spatial database applications,
an approach could be chosen which allows a system to be modified or extended such that special
semantics of the application domain can be used for efficient data processing.

A future direction to go into thus would be to extract the essential concepts and ideas of tempo-
ral data models and support them in a system such that they can also be used for other application
domains. Object-oriented data models and systems are extensible by allowing subtyping and over-
writing methods and this way support the reusability of both data structures and code. With
respect to this form of extensibility, an idea to investigate further would be to support the con-
cepts used in TOM — the temporal object identifier, the temporal algebra operations and temporal
constraints — in a more general way, as depicted in figure 8.1. For example, if the DBMS supported
the possibility to extend the notion of an object identifier and to overwrite algebra operations and
constraint checking algorithms, application domains such as spatial data and versioning problems
could be supported besides temporal data within the same DBMS. Another advantage of such an
approach would be that overriding these operations with different semantics would in most cases
still allow the use of the storage management, the query processing with the implemented query
optimisation algorithm, crash recovery, concurrency control and transaction processing supported
in the core system.

136 CHAPTER 8. CONCLUSIONS

QL =f-t-»
DDL <(-1->
Core System
DML <f-t->
A A A
v v v
OID Algebra Constraints
A A A
Temporal Temporal Temporal
OIb Algebra Constraints

Figure 8.1: An object-oriented DBMS allowing the overwriting of the object identifier, algebra
and constraints, e. g. with subclasses which support temporal object identifiers, temporal algebra
operations and temporal constraints

Appendix A

Glossary

attribute timestamping The time interval or temporal element denoting the validity or storage
time is assigned to attributes.

bitemporal database A bitemporal database is a combination of a historical and a rollback
database.

chronon A chronon is a non-decomposable time interval of some fixed, minimal duration, e. g. a
second.

class The term class, used in object-oriented languages and data models, appears with different
meanings. A class can be the type definition of objects, a collection of objects or the set of
all instances of a type, also called the extent of a type. In the data models OM and TOM,
the term class denotes the extent of a type.

coalescing Coalescing is the operation which calculates maximal time intervals for value-
equivalent tuples.

collection A collection is a semantic grouping of objects of the same type.

derived table In SQL, a derived table is a query expression in the FROM-clause used instead of a
table reference.

event An event is an instantaneous fact, 1. e. something occurring at an instant in time. An event
is said to occur at a chronon t, if it occurs at any time instant during t.

event table An event table contains data timestamped with time instants.

extension approach Using the extension approach to define a temporal data model means that
parts of the model, for example, some of the data structures or the algebra operations, are
extended with special attributes or special operations, respectively. A different approach is
the generalisation approach.

generalisation approach Using the generalisation approach to define a temporal data model
means that all concepts and constructs of the underlying non-temporal data model are turned
into temporal equivalents. A different approach is the extension approach.

historical database A historical database records the history of data with respect to the real
world.

homogeneity A relation is called homogeneous if all of its tuples are homogeneous. A tuple is
homogeneous if all timestamps of its attribute values cover the same time period.

137

138 APPENDIX A. GLOSSARY

horizontal temporal anomaly In a temporal relational data model using tuple timestamping,
the horizontal temporal anomaly forces the splitting of the horizontal format of a relation
due to the asynchronous change of some of its attribute values.

inhomogeneity A relation or tuple is inhomogeneous if it is not homogeneous.

lifespan In the temporal object data model TOM, the lifespan covers the time period an object
exists in the real world.

meta-data Meta-data is data describing data, 1. e. data about the structure of data.

non-sequenced semantics A query has non-sequenced semantics if it is evaluated not interpret-
ing timestamp attributes, using the non-temporal algebra operations.

object identifier Object identifiers are unique system-generated identifiers for objects.

OM OM (Object Model) is a (non-temporal) object data model supporting role modeling. The
model contains an algebra based on collections of objects and constraints [Nor92, Nor93].

rollback database A rollback database records all changes done to the database itself and can
be viewed as an append-only database.

sequenced semantics A query has sequenced semantics if it is evaluated interpreting timestamp
attributes, using temporal algebra operations with snapshot reducible semantics.

snapshot database A database recording only a single state of the real world is a snapshot
database.

snapshot reducibility Snapshot reducibility is a reduction proof defining temporal semantics,
for example, of algebra operations, by reducing them on single time instants and applying the
corresponding non-temporal operations on each time instant. Thus, the temporal semantics
are equivalent to the application of non-temporal semantics for each time instant.

temporal completeness In the relational model, a language is temporally complete if

. 1t 18 temporally semi-complete,

. 1t 1s possible to override snapshot reducibility,

1
2
3. 1t is possible to substitute a valid-time relation with a valid-time query,
4. Allen’s set of comparison predicates can be used, and

5

. 1t 1s possible to retrieve and constrain maximal valid-time periods and valid times as
specified by the user.

temporal element A temporal element is a finite union of time intervals.

temporal object identifier A temporal object identifier is composed of an object identifier and
a lifespan denoting, for example, when the object existed in the real world.

temporal semi-completeness In the relational model, a language is temporally semi-complete
if for every non-temporal relation, there exists a temporally equivalent valid-time relation,
and if for every non-temporal query a snapshot reducible, syntactically similar valid-time
query exists.

temporal upward compatibility With respect to SQL, a language is temporally upward com-
patible if any legal SQL statement can still be executed on a temporal database yielding the
same result as if executed on a corresponding non-temporal snapshot database.

TimeDB A temporally complete bitemporal DBMS implemented as a front-end to a non-temporal
relational DBMS.

139

time instant A time instant is a time point on an underlying time axis.

time interval A time interval denotes a period of time on an underlying time axis and consists
of a starting time instant and an ending time instant.

Time Normal Form A relation is in Time Normal Form if in each tuple all time-varying at-
tributes change their values simultaneously. This can be achieved by decomposing a relation.

TOM TOM (Temporal Object Model) is a temporal object data model based on generalising
the data structures, the algebra and the constraints of the underlying data model OM into
temporal ones.

TOMS TOMS (Temporal Object Model System) is a temporal object management system based
on the data model TOM.

transaction time The transaction time of a fact denotes the time interval during which the fact
is stored in a database.

transaction-time database Synonym for rollback database.

tuple timestamping The time interval or temporal element denoting the validity or storage time
is assigned to tuples.

upward compatibility With respect to SQL, a language is upward compatible if it contains SQL
as a subset.

user-defined time User-defined time is an uninterpreted attribute domain of type time.

valid time The valid time of a fact denotes the time interval during which the fact is true with
respect to the real world.

valid-time database Synonym for historical database.

value-equivalent tuple Value-equivalent tuples are tuples which have identical non-timestamp
attribute values.

vertical temporal anomaly In a temporal relational data model, the vertical temporal anomaly
forces the splitting of a logical unit of data into more than one tuple.

Bibliography

[A1183]

[A1i86]

[BFGI6]

[BJS95]

[BM8S]

[BM92]

[BM94]

[B5h94]
[B5h95]
[Bur9?]
[Cat93]
[Cat94]

[CCS8T]

[CC93]

J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of

the ACM, 1983, 16(11), pages 832-843.

G. Ariav. A Temporally Oriented Data Model. ACM Transactions on Database Sys-
tems, 1986, 11(4), pages 499-527.

E. Bertino, E. Ferrari, and G. Guerrini. A Formal Temporal Object-Oriented Data
Model. In P. Apers, M. Bouzeghoub, and G. Gardarin, editors, Advances in Database
Technology. Springer, 1996, pages 342-356.

M. Béhlen, C. Jensen, and R. Snodgrass. Evaluating the completeness of TSQL2. In
J. Clifford and A. Tuzhilin, editors, Recent Advances in Temporal Databases, 1995,
pages 153-172.

D. Beech and B. Mahbod. Generalized Version Control in an Object-Oriented
Database. In Proceedings of the International Conference on Data Engineering, 1988,
pages 14-22.

M. Béhlen and R. Marti. A Temporal Extension of the Deductive Database System
ProQuel. Technical report, Departement Informatik, ETH Ziirich, 1992.

M. Béhlen and R. Marti. On the Completeness of Temporal Database Query Lan-
guages. In Proceedings of the First International Conference on Temporal Logic, July

1994, pages 283-300.

M. Bohlen. Managing Temporal Knowledge in Deductive Databases. PhD thesis,
Departement Informatik, ETH Ziirich, 1994.

M. Béhlen. Temporal Database System Implementations. SIGMOD RECORD, 1995,
24(4), pages 53-60.

J. Burse. ProQuel: Using Prolog to Implement a Deductive Database System. Tech-
nical report, Departement Informatik, ETH Ziirich, 1992.

R. G. G. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann
Publishers, San Mateo, California, 1993.

R. G. G. Cattell. Object Data Management. Addison Wesley, 1994.
J. Clifford and A. Croker. The Historical Relational Data Model (HRDM) and Al-

gebra Based on Lifespans. In Proceedings of the International Conference on Data
Engineering. IEEE Computer Society Press, 1987, pages 528-537.

J. Clifford and A. Croker. The Historical Relational Data Model (HRDM) Revis-
ited. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, edi-
tors, Temporal Databases: Theory, Design, and Implementation, Benjamin/Cummings
Publishing Company, 1993, pages 6-27.

140

BIBLIOGRAPHY 141

[CG92]

[CGS95]

[Che76]

[Cho94]

[C1i82]

[Cod70]

[CS88]

[CTS85)

[CW83]

[Dat89]

[Day89]

[DD93]

[DLHC95]

[dS95]

[DT87]

[DW92]

[EdOP93]

T.S. Cheng and S. K. Gadia. A Seamless Object-Oriented Model for Spatio-Temporal
Databases. Technical Report 92-41, Computer Science Department, lowa State Uni-
versity, 1992.

C. De Castro, F. Grandi, and M. R. Scalas. On Schema Versioning in Temporal
Databases. In J. Clifford and A. Tuzhilin, editors, Recent Advances in Temporal
Databases, 1995, pages 272-291.

P. P. Chen. The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems, 1976, 1(1), pages 9-36.

J. Chomicki. Temporal Query Languages: A Survey. In D. M. Gabbay and H. J.
Ohlbach, editors, Proceedings of the First International Conference on Temporal Logic,
1994, pages 506-534.

J. Clifford. A Model for Historical Databases. In Proceedings of Workshop on Logical
Bases for Data Bases, 1982.

E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communica-
tions of the ACM, 1970, 13(6), pages 377-387.

M. Caruso and E. Sciore. Meta-Functions and Contexts in an Object-Oriented
Database Language. In Procedings of the ACM-SIGMOD International Conference
on Management of Data, 1988, pages 56-65.

J. Clifford and A. U. Tansel. On an Algebra for Historical Relational Databases: Two
Views. In S. Navathe, editor, SIGMOD RECORD, 1985, pages 247-265.

J. Clifford and D. S. Warren. Formal Semantics for Time in Databases. ACM Trans-
actions on Database Systems, 1983, 8(2), pages 214-254.

C.J. Date. A guide to THE SQL STANDARD. Addison-Wesley Publishing Company,
1989.

U. Dayal. Queries and Views in an Object-Oriented Data Model. In Proceedings of
the Second Workshop on Database Programming Languages, 1989, pages 80-102.

C. J. Date and H. Darwen. A guide to THE SQL STANDARD. Addison-Wesley
Publishing Company, 1993.

C. Davies, B. Lazell, M. Hughes, and L. Cooper. Time is just another Attribute —
or at least, just another Dimension. In J. Clifford and A. Tuzhilin, editors, Recent
Advances in Temporal Databases, 1995, pages 153-172.

C.S. dos Santos. Design and Implementation of Object-Oriented Views. In Proceedings
of the Database and Expert Systems Applications (DEXA) Conference, 1995, pages 91—
102.

P. Dadam and J. Teuhola. Managing Schema Versions in a Time-Versioned NINF
Relational Database. In BTW, 1987, pages 161-179.

U. Dayal and G. Wuu. A Uniform Approach to Processing Temporal Data. In Proceed-
ings of the International Conference on Very Large Databases (VLDB), 1992, pages
407-418.

N. Edelweiss, M. de Oliveira, and B. Pernici. An Object-Oriented Temporal Model.
In Proceedings of the Conference on Advanced Information Systems FEngineering

(CAISE), 1993, pages 397-415.

142

[EEAK90]

[EN94]
[EW90]

[EWK93a]

[EWKO93b]

[Gad86]
[Gad8g]

[GBBY4]

[GN93]

[G0O93]

[Gro96]

[GV85]

[GY88]

[GY91]

[Haw88]

[FS95]

BIBLIOGRAPHY

R. Elmasri, I. El-Assal, and V. Kouramajian. Semantics of Temporal Data in an
Extended ER Model. In Proceedings of the Conference on the Entity-Relationship
Approach, 1990, pages 249-264.

R. Elmasri and S. Navathe. Fundamentals of Database Systems. Benjamin/Cummings
Publishing Company, 1994.

R. Elmasri and G. T. J. Wuu. A Temporal Model and Query Language for ER
Databases. In International Conference on Data Engineering, 1990, pages 76-83.

R. Elmasri, G.T.J. Wuu, and V. Kouramajian. A Temporal Model and Query Lan-
guage for EER Databases. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
and R. Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,
Benjamin/Cummings Publishing Company, 1993, chapter 9, pages 212-229.

R. Elmasri, G.T.J. Wuu, and V. Kouramajian. The Time Index and the Mono-
tonic Bt-tree. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,
Benjamin/Cummings Publishing Company, 1993, chapter 18, pages 433—-456.

S. K. Gadia. Toward a Multihomogeneous Model for a Temporal Database. In Pro-
ceedings of the International Conference on Data Engineering, 1986, pages 390-397.

S. K. Gadia. A Homogeneous Relational Model and Query Languages for Temporal
Databases. ACM Transactions on Database Systems, 1988, 13(4), pages 418-448.

G. Guerrini, E. Bertino, and R. Bal. A Formal Definition of the Chimera Object-
Oriented Data Model. Technical Report IDEA.DE.2P.011.01, ESPRIT Project 6333,
1994.

S. K. Gadia and S. S. Nair. Temporal Databases: A Prelude to Parametric Data. In
A. Tansel, J. Chifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Tem-
poral Databases: Theory, Design, and Implementation, Benjamin/Cummings Publish-
ing Company, 1993, chapter 2, pages 28-66.

I. A. Goralwalla and M. T. Ozsu. Temporal Extensions to a Uniform Behavioral Object
Model. In Proceedings of the 10th International Conference on the ER Approach, 1993,
pages 110-121.

R. Gross. Implementation of Constraint Database Systems Using a Compile-Time
Rewrite Approach. PhD thesis, ETH Ziirich, 1996.

S. K. Gadia and J. H. Vaishnav. A Query Language for a Homogeneous Temporal
Database. In Proceedings of the International Conference on Principles of Database
Systems, 1985, pages 51-56.

S. K. Gadia and C. Yeung. A Generalized Model for a Relational Temporal Database.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, 1988, pages 251-259.

S. K. Gadia and C. Yeung. Inadequacy of Interval Timestampsin Temporal Databases.
Information Systems, 1991, b4, pages 1-22.

S. W. Hawking. A Brief History of Tvme. Bantam Books, New York, 1988.

A. Heuer and G. Saake. Datenbanken: Konzepte und Sprachen. International Thomson

Publishing, 1995.

BIBLIOGRAPHY 143

[HSW75]

[Jea9d3]

[IMRO1]

[IMS79]

[KGBW90]

[Kol93]

[KRS90]

[KS92a]

[KS92b]

[LI88]

[LM93]

[Lor93]

[Mit88]

[Mit89]

[MS91]

G. D. Held, M. Stonebraker, and E. Wong. INGRES — A Relational Database Man-
agement System. In Proceedings of the AFIPS National Computer Conference, 1975,
pages 409-416.

C. Jensen and et. al. A Consensus Glossary of Temporal Database Concepts. Technical

Report R 93-2035, Aalborg University, November 1993.

C. S. Jensen, L. Mark, and N. Roussopoulos. Incremental Implementation Model for
Relational Databases with Transaction Time. [EEE Transactions on Knowledge and
Data Engineering, 1991, 3(4), pages 461-473.

S. Jones, P. Mason, and R. Stamper. LEGOL 2.0: A Relational Specification Language
for Complex Rules. Information Systems, 1979, 4(4), pages 293-305.

W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architecture of the ORION Next-
Generation Database System. IEEE Transactions on Knowledge and Data Engineer-

ing, 1990, 2(1), pages 109-124.

C.P. Kolovson. Indexing Techniques for Historical Databases. In A. Tansel, J. Clifford,
S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Temporal Databases: The-
ory, Design, and Implementation, Benjamin/Cummings Publishing Company, 1993,
chapter 17, pages 418-432.

W. Kiéfer, N. Ritter, and H. Schéning. Support for Temporal Data by Complex
Objects. In Proceedings of the International Conference on Very Large Databases

(VLDB), 1990, pages 24-35.

W. Kéfer and H. Schéning. Mapping a Version Model to a Complex-Object Data
Model. In Proceedings of the International Conference on Data Enginering, 1992,
pages 348-357.

W. Kiéfer and H. Schéning. Realizing a Temporal Complex-Object Data Model. In
SIGMOD Conference 1992, 1992, pages 266-275.

N. Lorentzos and R. G. Johnson. TRA: A Model for a Temporal Relational Algebra.
In Proceedings of the Conference on Temporal Aspects in Information Systems, 1988,
pages 99-112.

T.Y.C. Leung and R.R. Muntz. Stream Processing: Temporal Query Processing
and Optimization. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,
Benjamin/Cummings Publishing Company, 1993, chapter 14, pages 329-355.

N. Lorentzos. The Interval-extended Relational Model and its Application to Valid-
time Databases. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,
Benjamin/Cummings Publishing Company, 1993, chapter 3, pages 67-91.

B. Mitschang. Towards a Unified View of Design Data and Knowledge Representation.
In Proceedings of the 2*¢ International Conference on Expert Database Systems, 1988,
pages 33-50.

B. Mitschang. Extending the Relational Algebra to Capture Complex Objects. In
Proceedings of the International Conference on Very Large Databases (VLDB), 1989,
pages 297-305.

L. E. McKenzie and R. T. Snodgrass. Evaluation of Relational Algebras Incorporating
the Time Dimension in Databases. ACM Computing Surveys, 1991, 23(4), pages 501
543.

144

[MS93]

[NASS]

[NA8Y]

[NA93]

[Nor92]

[Nor93]

[NSWWO6]

[NW9T]
[02]
[POS92]
[Pul95]
[Roc75]
[Rod92a]
[Rod92b]

[RS91]

[RS93]

[RS95]

BIBLIOGRAPHY

J. Melton and A. R. Simon. Understanding the new SQL: A Complete Guide. Morgan
Kaufmann Publishers, 1993.

S. B. Navathe and R. Ahmed. TSQL : A Language Interface for History Databases. In
M. Leonard C. Rolland, F. Bodart, editor, Proceedings of the Conference on Temporal
Aspects in Information Systems, 1988, pages 113-128.

S. B. Navathe and R. Ahmed. A Temporal Relational Model and Query Language.
Information Sciences, 1989, 49(2), pages 147-175.

S. Navathe and R. Ahmed. Temporal Extensions to the Relational Model and SQL. In
A. Tansel, J. Chifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Tem-
poral Databases: Theory, Design, and Implementation, Benjamin/Cummings Publish-
ing Company, 1993, pages 92-109.

M. C. Norrie. A Collection Model for Data Management in Object-Oriented Systems.
PhD thesis, University of Glasgow, Department of Computing Science, Glasgow G12
8QQ, Scotland, December 1992.

M. C. Norrie. An Extended Entity-Relationship Approach to Data Management in
Object-Oriented Systems. In Proceedings of the 12th International Conference on the
ER Approach, 1993, pages 390-401.

M. C. Norrie, A. Steiner, A. Wiirgler, and M. Wunderli. A Model for Classification
Structures with Evolution Control. In Proceedings of the 15th International Conference
on Conceptual Modelling, 1996, pages 456-471.

M. C. Norrie and A. Wiirgler. OM Framework for Object-Oriented Data Management.
Journal of the Swiss Informaticians Society, August 1997.

02 Technology. The Oy System, Release 4.6; Manuals.

R. J. Peters, M. T. Oszu, and D. Szafron. TIGUKAT: An Object Model for Query
and View Support in Object Database Systems. Technical Report 92-14, University
of Alberta, 1992.

D. Pulfer. Optimierung von temporalen Queries. Master’s thesis, Institute for Infor-
mation Systems, ETH Ziirich, February 1995.

M. J. Rochkind. The Source Code Control System. [EEE Transactions on Software
Engineering, 1975, 1(4), pages 364-370.

J. F. Roddick. Schema Evolution in Database Systems — An Annotated Bibliography.
ACM SIGMOD Record, 1992, 21(4), pages 35-40.

J. F. Roddick. SQL/SE — A Query Language Extension for Databases supporting
Schema Evolution. ACM SIGMOD Record, 1992, 21(3), pages 10-16.

E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model with
Temporal Constraints. In Proceedings of the 10th International Conference on the ER
Approach, 1991, pages 205-230.

E. Rose and A. Segev. TOOA - A Temporal Object-Oriented Algebra. In O. Nierstrasz,
editor, Proceedings ECOOP 93, 1993, pages 297-325.

J. F. Roddick and R. Snodgrass. Schema Versioning Support. In R. Snodgrass, editor,
The TSQL2 Temporal Query Language, Kluwer Academic Publishers, 1995, chap-
ter 22, pages 427-449.

BIBLIOGRAPHY 145

[SA85]

[SAS6]

[Sar90a]

[Sar90b]

[Sar93]

[SBJS96a]

[SBIS96D]

[SC91]

[Sci91]

[Sci94]

[SDY4]

[SDJ*93]

[Seg93]

[Shis1]

[SK86]

[SL76]

R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In S. Navathe, editor,
Proceedings of the ACM SIGMOD International Conference on Management of Data,
1985, pages 236-246.

R. Snodgrass and I. Ahn. Temporal Databases. IEEE Computer, 1986, 19(9), pages
35-42.

N. Sarda. Algebra and Query Language for a Historical Data Model. The Computer
Journal, 1990, 33(1), pages 11-18.

N. Sarda. Extensions to SQL for Historical Databases. IEEFE Transactions on Knowl-
edge and Data Engineering, 1990, 2(2), pages 220-230.

N. Sarda. HSQL: A Historical Query Language. In A. Tansel, J. Clifford, S. Gadia,
S. Jajodia, A. Segev, and R. Snodgrass, editors, Temporal Databases: Theory, Design,
and Implementation, Benjamin/Cummings Publishing Company, 1993, pages 110-138.

R. T. Snodgrass, M. H. Béhlen, C. S. Jensen, and A. Steiner. Adding Transaction Time
to SQL/Temporal. SQL/Temporal Change Proposal, ANSI X3H2-96-502r2, 1SO/IEC
JTC1/5C21/WGES DBL MAD-147r2, November 1996.

R. T. Snodgrass, M. H. Bohlen, C. S. Jensen, and A. Steiner. Adding Valid Time
to SQL/Temporal. SQL/Temporal Change Proposal, ANSI X3H2-96-501r2, ISO/IEC
JTC1/5C21/WGES DBL MAD-146r2, November 1996.

S.Y.W. Suand H. M. Chen. A Temporal Knowledge Representation Model OSAM* /T
and its Query Language OQL/T. In Proceedings of the International Conference on
Very Large Databases (VLDB), 1991, pages 431-442.

E. Sciore. Using Annotations to Support Multiple Kinds of Versioning in an Object-
Oriented Database System. ACM Transactions on Database Systems, 1991, 16(3),
pages 417-438.

E. Sciore. Versioning and Configuration Management in an Object-Oriented Data
Model. Proceedings of the International Conference on Very Large Databases (VLDB),
1994, 3(1), pages 77-106.

T. Smith and J. Drukman. Programmer’s Guide to the Oracle Call Interface. Oracle
Corporation, Oracle Corporation, Belmont, California, USA, 1994.

R. Snodgrass, C.E. Dyreson, C.S. Jensen, N. Kline, M.D. Soo, L. So, and J. Whelan.
The MULTICAL System, Release 1.0, October 1993.

A. Segev. Join Processing and Optimization in Temporal Relational Databases. In
A. Tansel, J. Chifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Tem-
poral Databases: Theory, Design, and Implementation, Benjamin/Cummings Publish-
ing Company, 1993, chapter 15, pages 356-387.

D. W. Shipman. The Functional Data Model and Data Language DAPLEX. ACM
Transactions on Database System, 1981, 6(1), pages 140-173.

A. Segev and K. Kawagoe. Temporal Data Management. In Proceedings of the Inter-
national Conference on Very Large Databases (VLDB), 1986, pages 79-88.

D. G. Severance and G. M. Lohman. Differential Files : Their Application to the
Maintenance of Large Databases. ACM Transactions on Database Systems, 1976,
1(3), pages 256-267.

146

[SLK89)

[SN97a]

[SN9T7h]

[SN97c]

[Sno84]

[Sno8T]

[Sno93]

[Sno95a]

[Sno95b]

[SQL93)]

[SRH90]

[SS87]

[SS91]

[Ste95]

[Swed3]

[Tan86]

BIBLIOGRAPHY

S. Y. W. Su, H. Lam, and V. Krishnamurthy. An Object-Oriented Semantic Associ-
ation Model (OSAM*). In S. T. Kumara, A. L. Soyster, and R. L. Kashyap, editors,
Artificial Intelligence: Manufacturing Theory and Practice, Industrial Engineering and
Management Press, Norcross, GA, 1989, chapter 17.

A. Steiner and M. C. Norrie. A Temporal Extension to a Generic Object Data Model.
Technical Report 265, Institute for Information Systems, ETH Ziirich, May 1997.

A. Steiner and M. C. Norrie. Implementing Temporal Databases in Object-Oriented
Systems. In R. W. Topor and K. Tanaka, editors, Database Systems for Advanced
Applications (DASFAA), 1997, pages 381-390.

A. Steiner and M. C. Norrie. Temporal Object Role Modelling. In Olive A. and
Pastor J. A, editors, Proceedings of the Conference on Advanced Information Systems

Engineering (CAISE), 1997, pages 245-258.

R. Snodgrass. The Temporal Query Language TQuel. In Proceedings of the Interna-
tional Conference on Principles of Database Systems, 1984, pages 204-212.

R. Snodgrass. The Temporal Query Language TQuel. ACM Transactions on Database
Systems, 1987, 12(2), pages 247-298.

R. Snodgrass. An Overview of TQuel. In A. Tansel, J. Clifford, S. Gadia, S. Jajo-
dia, A. Segev, and R. Snodgrass, editors, Temporal Databases: Theory, Design, and
Implementation, Benjamin/Cummings Publishing Company, 1993, pages 141-182.

R. Snodgrass. Temporal Object-Oriented Databases: A Critical Comparison. In
W. Kim, editor, Modern Database Systems, ACM Press, 1995, chapter 19, pages 386—
408.

R. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer Academic Pub-
lishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061, USA, 1995.

American National Standards Institute. ANSI X3H2-93-091/YOK-003, 1SO-ANSI
(Working Draft) Database Language SQL3, February 1993.

M. R. Stonebraker, L. Rowe, and M. Hirohama. The Implementation of POSTGRES.
IEEE Transactions on Knowledge and Data Engineering, 1990, 2(1), pages 125-142.

A. Segev and A. Shoshani. Logical Modelling of Temporal Data. In Proceedings of
the ACM SIGMOD Annual Conference on Management of Data, May 1987, pages
454-466.

H. J. Schek and M. H. Scholl. From Relations and Nested Relations to Object Models.
In M. S. Jackson and A. E. Robinson, editors, Aspects of Database Systems: Proceed-
wngs of the 9th British National Conference on Databases. Butterworth-Heinemann,

1991, pages 202-225.

A. Steiner. The TimeDB Temporal Database Prototype. Institute for Information
Systems, ETH Ziirich. http://www.timeconsult.com, September 1995.

Swedish Institute of Computer Science. SICStus Prolog User’s Manual, prolog 2.1 #8
edition, 1993.

A. Tansel. Adding Time Dimension to Relational Model and Extending Relational
Algebra. Information Systems, 1986, 11(4), pages 343-355.

BIBLIOGRAPHY

[Tan93]

[TAO8Y]

[TCG+93]

[TG8Y]

[WD93]

[Wuu9l]

A. Tansel. A Generalized Relational Framework for Modeling Temporal Data. In
A. Tansel, J. Chifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Tem-
poral Databases: Theory, Design, and Implementation, Benjamin/Cummings Publish-
ing Company, 1993, pages 183-201.

A. Tansel, E. Arkun, and G. Ozsoyoglu. Time-By-Example Query Language for His-
torical Databases. IEEE Transactions on Software Engineering, 1989, 15(4), pages
464-478.

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal
Databases: Theory, Design, and Implementation. Benjamin/Cummings Publishing
Company, 1993.

A. Tansel and L. Garnett. Nested Historical Relations. SIGMOD RECORD, 1989,
18(2), pages 284-293.

G.T.J. Wuu and U. Dayal. A Uniform Model for Temporal and Versioned Object-
Oriented Databases. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,
Benjamin/Cummings Publishing Company, 1993, chapter 10, pages 230-247.

G.T.J. Wuu. SERQL: An ER Query Language Supporting Temporal Data Retrieval.
In Proceedings of the 10th International Phoeniz Conference on Computers and Com-
munications, 1991, pages 272-279.

BIBLIOGRAPHY

Lebenslauf

Name :

Geburtsdatum :

Geburtsort :
Zivilstand :

1971 - 1977

1977 — 1985

1982 — 1983

Juni 1985

1985 — 1986

1986 — 1991

November 1991

1992 — 1993
1993 — 1995
1995 — 1996
1996 — 1997

Andreas Steiner
12. Juni 1964
Richterswil
ledig

Primarschule in Pféffikon (SZ)

Gymnasium Stiftsschule Einsiedeln (SZ)

Austauschjahr in Florida, USA

Matura Typ B

Elektrotechnikstudium an der ETH Ziirich
Informatikstudium an der ETH Ziirich

Abschluss als Dipl. Informatik-Ing. ETH

Stelle als Software-Entwickler in der Privatwirtschaft
Assistent am Institut fiir Informationssysteme der ETH

Ziirich in der Gruppe fiir wissensbasierte Systeme
(Prof. Dr. Robert Marti)

Assistent am Institut fiir Informationssysteme der ETH
Ziirich in der Gruppe fiir Entwicklung und Anwendung —
interimistisch (Prof. Dr. Carl A. Zehnder)

Assistent /Doktorand am Institut fiir Informationssysteme
der ETH Ziirich in der Gruppe fiir globale Informations-
systeme (Prof. Dr. Moira C. Norrie)

