OMS /Java : Model Extensibility of OODBMS
for Advanced Application Domains

Andreas Steiner, Adrian Kobler and Moira C. Norrie
{steiner, kobler, norrie}@inf.ethz.ch

Institute for Information Systems

ETH Zurich, CH-8092 Zurich, Switzerland

Abstract. We show how model extensibility of object-oriented data
management systems can be achieved through the combination of a high-
level core object data model and an architecture designed with model
extensibility in mind. The resulting system, OMS/Java, is both a gen-
eral data management system and a framework for the development of
advanced database application systems. All aspects of the core model —
constructs, query language and constraints — can easily be generalised to
support, for example, the management of temporal, spatial and versioned
data. Specifically, we show how the framework was used to extend the
core system to a temporal object-oriented database management system.

1 Introduction

Extensibility has often been considered a purely architectural issue in database
management systems (DBMS). In the 1980s, there was an increase in the var-
ious forms of DBMS that appeared — many of which were tailored to specific
application domains such as Geographical Information Systems or Computer
Aided Design systems. It was recognised that no single DBMS could hope to
satisfy the requirements of all such applications and the idea of an extensible
DBMS emerged. Thereafter, a number of extensible systems appeared — includ-
ing kernel e.g. [CDKK85], customisable e.g. [HCL*90], toolkit e.g. [CDGT89]
and generator e.g. [MBHT] systems. In these systems, the emphasis tends to-
wards providing architectural support in terms of how to engineer new DBMS
from existing frameworks and services such as storage management, transaction
management, access methods and query optimisation and we therefore call this
architecture extensibility. The idea evolved of a database engineer as someone
whose task would be to construct an advanced DBMS based on such a system —
and, frequently, this was a significant task. A discussion of general requirements
of such systems is given in [GD94].

In contrast, there have been proposals for various forms of model extensibility
in which new types and/or operators can be introduced in a DBMS to meet the
needs of specific application domains, e.g. [BLW88, SC94, Cha96]. We aim for
a higher-level of model extensibility in which all aspects of a data model —
structures, query language and constraints — can be generalised. This ensures
upward compatibility in that the core model, languages and mode of working

remain essentially the same. For example, generalisation to a temporal system
enables temporal semantics to be associated with all constructs, operations and
constraints of the core model. Further, non-temporal queries will be unaffected
and temporal queries have the same form as non-temporal queries — with only
prefixes required to specify that a temporal semantics is required. Similarly, the
DBMS could be generalised to handle spatial data, versioned data, multimedia
data and any combination of these.

OMS/Java is both a framework and an object data management system de-
signed with such model extensibility in mind. The system is based on the OM
model which, through a clear separation of model concepts, orthogonality of
design and general modelling expressiveness has the properties required of the
core model of such an extensible system. The development and architecture of
OMS/Java exploited current software engineering principles such as application
frameworks and design patterns to ensure that benefits of reusability and exten-
sibility could be fully exploited.

In this paper, we describe the OMS/Java architecture and system and how
its extensibility was exploited to implement a temporal object-oriented database
management system with minimal effort. We begin in Sect. 2 and 3 with a
discussion of the general requirements for systems with true model extensibility.
This includes a discussion of the requirements of an appropriate core model along
with a description of our core model OM. Section 4 then presents the general
OMS/Java architecture, followed with a description of the OMS/Java system.
To demonstrate the process of model extensibility, we describe the development
of the temporal OMS/Java system, TOMS/Java, in Sect. 5. We conclude with
a summary and outline of future work in Sect. 6.

2 Architecture

2.1 Reusable Parts of a DBMS

Modern DBMS have to support a variety of tasks and requirements [EN94,
HS95]. A DBMS manages persistent data, meaning that data exists longer than
tasks run by application programs. Data structures are defined to describe and
store the data in a uniform way. Sophisticated access methods (for example, using
indexing or hashing) provide for efficient data access. (Declarative) languages
and operations need to be supported which allow the definition, modification
and retrieval of data. The DBMS should also provide means and techniques to
optimise data retrieval. Transaction management and concurrency control allow
multiple users to access the same data simultaneously, avoiding any problems
which might evolve. Additionally, a modern DBMS should support concepts to
provide data consistency, recovery from system crashes and database security
and authorisation.

The implementation of an extensible data model as a DBMS should still
support all of these tasks while allowing the user to extend the model and system
with new functionality. Currently available DBMS support the features listed

above in one way or another. Relational DBMS support a single data structure —
the relation — and a non-extensible functionality. Object-oriented DBMS support
extensibility of the data structures through the use of type constructors such as
tuple, set, bag, list and so on and extensibility of the functionality through the
possibility to store methods in the database.

It is difficult to efficiently and effectively support application domains which
are based on specialised data models — for example, the management of tem-
poral or spatial data or versioning — using such systems. The limitations of the
relational data model with respect to data structures and functionality make
1t necessary to either build the additional constructs needed into the applica-
tion itself or implement a specialised DBMS. With respect to object-relational
or object-oriented DBMS; it is possible to extend the system to support such
advanced application domains. We have investigated such an approach in the
area of temporal databases [SN97b]. The major drawbacks of this approach,
however, are that the DBMS cannot use the special semantics — for example,
the temporal semantics — for query optimisation, that the resulting retrieval and
update operations turn out to be very complicated and error prone and that the
specification of specialised integrity constraints usually may only be supported
through the implementation of methods.

Our idea of extensibility thus goes a step further. We would like to have a
DBMS based on an extensible data model which allows the reuse of features
such as persistence, query optimisation, efficient access methods, transaction
management, crash recovery and authorisation, while supporting a generalised
form of its data structures, algebra operations , query language and integrity
constraints with special semantics. Such a system is upwards compatible in the
sense that the basic data structures, operations and constraints can always be
used, even in more advanced, generalised forms of the underlying data model, and
that for each generalisation of the data model, the same concepts and manner of
work can be used. The next section discusses in more detail the generalisation
approach and introduces an architecture supporting this method of achieving
more advanced data models.

2.2 The Generalisation Approach

A data model ¥ can be considered to consist of three parts — the data structures
DS, the operations for data retrieval and update OP and the integrity constraints
C, M = (DS, OP, C). In [SN97c], we have introduced a temporal data model which
— in contrast to other temporal data models — enhances all three parts of a non-
temporal data model to support the management of temporal data. Figure 1
shows the three parts of a data model. Most of the temporal data models ex-
tend non-temporal data models in that they add special timestamp attributes to
store temporal data and add special operations to query temporal data. Other
ones extend the data structures but supply a special temporal algebra. Our gen-
eralisation approach, however, considers all three parts of the data model by
supporting temporal object identifiers, temporal algebra operations and tem-
poral constraints. The resulting temporal object model is independent of any

type system and orthogonal in the sense that anything modelled as an object,
including collections of objects, constraints and even types, can be timestamped.

4 Data Structures

Generalisation
of Data Structures,
Algebra and Constraints

Constraints

Generalisation of
Algebra

Generalisation of
Algebra and Constraints’

|
|
|
|
|
|
|
]
T
|
|
|
|
|
|
|
|
Algebra :
|

Fig. 1. The three parts of a data model

A DBMS should additionally provide for a language which can be used to
specify the data structures and integrity constraints used for an application (the
data definition language), update operations (the data manipulation language)
and queries (the query language). This language thus consists of three sublan-
guages.

In order to come up with a DBMS which allows the reuse of the general
tasks of query optimisation, efficient access methods, transaction management,
crash recovery and so on, but supplies generalised data structures, algebra op-
erations and integrity constraints, the notion of an object identifier, the algebra
operations, the integrity constraints and the language supported must be ex-
changeable, respectively, extendible. Such an architecture is depicted in Fig. 2.

QL <f-t-»
DDL <f-t->
Core System
DML <-t-»>
A A A
v v v
(e]]»} ‘ ‘ Algebra ‘ ‘ Constraints
[y y
Temporal Temporal Temporal
oID Algebra Constraints

Fig. 2. Another form of extensibility in a DBMS

The core system supports the basic tasks of persistence, query optimisation,
efficient access methods, transaction management, crash recovery, authorisation
and so on. The object identifier, the algebra and constraints can be extended
to support the needs of an advanced application domain, for example, temporal
databases. In this case, the notion of an object identifier is generalised into a
temporal object identifier which — besides a unique reference — contains a lifespan
denoting when the object existed, for example with respect to the real world. To
be able to query the temporal data stored in the form of temporal objects, the
non-temporal algebra operations are overridden with algebra operations having
the desired form of temporal semantics. Finally, the integrity constraints are
replaced by temporal integrity constraints.

The same approach can be used to support data models supporting the man-
agement of spatial data or versioning. For spatial data, we exchange, respectively,
extend the notion of an object identifier with a spatial identifier, which means
that the position of an object or the space that it covers is attached to the
object identifier. Algebra operations and integrity constraints are replaced with
operations and constraints which are able to deal with the new semantics. For
versioning, the version number is attached to the object identifier and again,
operations and integrity constraints which are able to deal with the versioned
objects are added to the system.

3 Requirements for Model Extensibility

The generalisation approach, as introduced in the last section, obviously deals
with objects and algebra operations and integrity constraints referring to these
objects. Usually, it is argued that advanced application domains such as the
management of temporal, spatial and versioned data can be supported using ex-
tensible DBMS which support abstract data types. Methods have to be written
to support queries and constraints dealing with the special semantics of the ap-
plication domain. Clearly, such approaches are based simply on the type system
of the DBMS used. The disadvantage of these approaches are, for example, that
the special semantics usually cannot be used for query optimisation, and that
the specification of queries and integrity constraints in the core model and the
advanced model are not similar.

Our generalisation approach is based on the object level, which means, that
we do not want to deal with instances of types and add additional attributes with
special semantics. We want to deal with objects which inherently have special
semantics, and a closer look at them reveals their property values. In other words,
we advocate an approach which takes the special semantics of an advanced data
model such as a temporal data model into account and does not treat temporal
properties as just another, but somehow a bit more special, attribute value.

Our idea of an extensible data model is that it should support a rich set
of algebra operations and constraints which work on collections of objects. The
following subsections discuss the requirements for model extensibility in more
detail and introduce a data model which supports the generalisation approach.

3.1 Separation of Typing and Classification

[Nor95] distinguishes between classifying entities into categories according to
general concepts of the application domain and describing the representation
of entities within the database in terms of types. For example, we can classify
persons as being employees, students or tennis players. Each employee, student
and tennis player is a person. Students can further be classified as studying either
engineering or mathematics. This is depicted on the left hand side of Fig. 3. On
the other hand, we represent persons as having a name and a birthdate, while
employees additionally have an employment number and a salary, students have
a student number and tennis players have a ranking and are member of a club.
This type hierarchy is depicted on the right hand side of Fig. 3.

person:
Persons X
Name: String
Birthdate: Date
Sub-Collections i
/ Sub-Types
Employees Students i -
employee: student: tennisplayer:
EmplD: Integer StudID: Integer Ranking: Integer
Salary: Integer Club: String

Engineering Math

Fig. 3. Distinguishing typing and classification

In reality, a person may be classified as a student and a tennis player simul-
taneously. This means, that a person may play the role of an employee and a
tennis player at the same time. In order to support the modelling of such facts,
a data model must allow objects to have different types simultaneously. In our
example, it must be possible that the same person object can be dressed with
the types employee and tennisplayer. Most of the object-oriented data models
do not support such role modelling. An object is considered to be an instance
of a single type. The next subsection introduces a data model which separates
typing from classification and supports role modelling.

3.2 The OM Model

Figure 4 shows a simple schema using the notation provided in the OM model.
It models collections Persons and Addresses which are related with each other
through association have. Cardinality constraints specify that a person has one
or more addresses, while an address may be related with one or more persons.
Collection Persons has three subcollections, namely Employees, Students and
TennisPlayers. The integrity constraint cover demands that each person is also
classified in at least one of the subcollections, or, in other words, that collections
Employees, Students and TennisPlayers cover collection Persons.

In the shaded region of each box denoting a collection, the member type
of the collection is given. Collection Persons, for example, has a member type
person, which means that each object contained in collection Persons must be
dressed with type person.

Persons

(1]

Addresses

[17]

Y . cover

employee student tennisplayer
Employees Students TennisPlayers

Fig.4. A schema in the OM model

The Data Structures. The OM model supports collections of objects and as-
sociations. A collection of objects contains objects dressed with the same member
type. A collection is itself an object and thus has an object identifier, and it is
possible to have collections of collections. Figure 5 shows how role modelling is
supported in the OM model. An object may be classified in two different col-
lections simultaneously, for example in a collection Employees and a collection
TennisPlayers. Depending on the collection through which we view this object,
we see a different representation of it. Looking at an object through collection
Employees shows attribute values such as a name, a birthdate and an employ-
ment number plus salary as defined in type employee. Viewing the same object
through collection TennisPlayers, however, shows attribute values according to
type tennisplayer.

Name: John Name: John
Birthdate: 1950 Birthdate: 1950
EmpID: 13432 Rank:

Salary: 10’000 Club: TCR

Emlpoyees [employee TennisPlayers [tennisplayer]

Fig. 5. Viewing an object in different roles

An association allows objects in collections to be related with each other.
An association is a binary collection since it contains pairs of object identifiers
where one object identifier refers to an object in a source collection while the
other one refers to an object in a target collection. Associations are objects as
well and thus have an object identifier.

Algebra. The operational model of OM is based on a generic collection algebra.
A list of operations supported in OM is given in Table 1. The algebra includes
operations such as union, intersection, difference, cross product, flatten, selection,
map and reduce as well as special operations over binary collections such as
domain, range, inverse, compose and closure.

Table 1. Algebra operations supported in the OM model

Algebra Operation|Signature
Union U : (coll[T'ypei], coll[Type2]) — coll[Type1 U Types]
Intersection N : (coll[T'ypei], coll[Type2]) — coll[Typer M Types]
Difference — : (coll[Type1], coll[Type2]) — coll[T'ype]
Cross Product x : (coll[Type1], coll[Typez]) — coll[(Type1, Type2)]
Flatten flatten : coll[coll[Type]] — coll[Type]
Selection o : (coll[Type], Type — boolean) — coll[Type]
Map map : (coll[Type,], Typer — Typez) — coll[T'ype:]
Reduce reduce : (coll[Type1], (Type1, Type) — Type, Type)
— Type
Domain domain : coll[(Type1, Typez)] — coll[Type:]
Range range : coll[(T'ype1, T'ype2)] — coll[Type2]
Inverse inv : coll[(Type1, Typez)] — coll[(Typez, Type1)]
Compose o : (coll[(Typer, T'ype2)], coll[(Types, T'ypes)])
— coll[(Type1, Types)]
Closure closure : coll[(Type1, Typez)] = coll[(Typer, Typez)]

The algebra operations are given specifying the input arguments and the
results along with their types. Collections which list two types, for example,
coll[(Typeyr, Types)] are binary collections, containing objects of the form <oid;,
oids >, where 0id; refers to an object of type T'ype; and oids to an object of
type Types.

For set operations, the notions of least common supertype and greatest com-
mon subtype are used to determine the member type of the resulting collections.
The union of two collections thus returns a collection whose type is the least
common supertype of the two collections involved (Type; L T'ypes). The result-
ing collection contains all the elements belonging to one (or both) of the argu-
ment collections. The intersection of two collections, on the other hand, returns
a collection whose type is the greatest common subtype of the two collections
involved (Type; M Types), containing the objects which are members of both
argument collections. The type of the resulting collection of the difference of two
collections corresponds to the type of the first argument in the operation. The
resulting collection contains exactly those objects in the first argument collection
which are not also members of the second one.

The cross product of two collections returns a binary collection coll[(T'ypes,
Types)] containing all combinations of an object of the first collection with an
object of the second one. The selection operation has as arguments a collection
and a function which selects objects from the collection. The result is a subset of

the argument collection. The map operator applies a function with a signature
Type; — Types to each object in the argument collection and returns a collection
of objects of type Types. The flatten operator takes a collection of collections
of the same member type and flattens them to a collection of type Type. The
reduce operator allows the execution of aggregate functions over a collection
of values. It has three arguments — the collection coll[Type;] over which the
aggregate function is executed, the aggregate function itself with a signature
(Typey, Type) — Type and an initial value of type Type.

The OM model also supports special operations over binary collections. Some
of them are listed in the second part of Table 1. The domain operation takes a
binary collection and forms a collection of all the objects that appear as the
first element of a pair of objects <oid;, oidy > belonging to the binary col-
lection, whereas the range operation returns a collection containing the second
elements of such pairs. The inverse operation swaps the first and the second ele-
ment of the pairs contained in the argument binary collection and returns them
in a new binary collection. The composition operation combines those binary
objects of the two argument collections where the second object in the first bi-
nary object <oidj, oidy > appears as first object of the second binary object,
<oids, oids >. The resulting collection contains binary objects, for example,
<o0idq, oids >. The closure of a binary collection is the reflexive transitive clo-
sure of a relationship represented by the binary collection.

Union, intersection and difference of collections; cross product, compose,
range, domain, flatten, inverse, closure simply manipulate object identifiers. Ex-
ceptions are the selection, map and reduce operations. A selection operation, for
example, might access attribute values of the objects in discourse to select the
desired ones.

Constraints. The OM model supports constraints such as the subcollection,
cover, digjoint, intersection and cardinality constraints. The subcollection con-
straint demands that each object in a collection is also member in its supercol-
lections. The disjoint, cover and intersection constraints over collections restrict
the form of relationship between supercollections and their subcollections. The
disjoint constraint demands that a set of subcollections do not share a single ob-
ject of their common supercollection, whereas the cover constraint demands that
each object of the supercollection appears in at least one of the subcollections
involved in the constraint. The intersection constraint relates a subcollection
with its supercollections such that all the common objects of the supercollec-
tions are also members of the subcollection. The cardinality constraints are used
to restrict how often an object may be contained in an association.

These constraints can be evaluated again by simply manipulating object
identifiers. The constraint themselves are also objects.

4 OMS/Java

OMS/Java (Object Model System for Java) [Mes97] can be considered as an
object-oriented database management system, respectively, as an object-oriented
framework for the Java environment supporting the OM generic data model
presented in Sect. 3.2. There exist also other instantiations of the OM model
for different environments such as OMS/Prolog [NW97] and OMS/Objectivity
[Pro97]. OMS/Java can be characterised by three main features:

— The OMS/Java core system is extensible in the form described in Sect. 2.2

— OMS/Java can either serve as an Object-Oriented Database Management
System (OODBMS) or as an Application Framework.
Used as an OODBMS, OMS/Java can be, for example, a server component
in a client/server environment. In the other case, a developer can use the
OM model to analyse and design the application domain and then use the
OMS/Java framework for implementing the applications. Hence, no mapping
is necessary between the resulting design model and the implementation.

— Using OMS/Java for managing instances of Java classes is easy and does not
cause any major redesign of existing class hierarchies.

Figure 6 shows a scenario where several client applications are connected to the
same OMS/Java database server.

Client Application Client Application

OMS/Java OMS/Java

OMS/Java Server
Abstract Database Interface

/

Objectivity/DB Sybase ObjectStore

Fig. 6. OMS/Java: a multi-purpose system

Note that in Fig. 6 the OMS/Java application framework is part of all client
applications, and that the storage management component of the OMS/Java
server 1s exchangeable. This means that one can use as a storage management
system either an existing database management system such as Objectivity/DB
or a persistant Java system such as ObjectStore PSE for Java.

In the following sections, we describe those concepts of the OMS/Java system
which are important to understand the basic ideas behind the framework as well
as the decisions made to facilitate system extensibility.

4.1 Core Architecture

The OMS/Java system is divided into three main components:

— The Configuration Component
The configuration component consists of all those parts of the system that
are exchangeable and extensible, including:

Object Identifier Manager

Algebra Operations

Constraints

Query Language

Data Definition Language

Data Manipulation Language

Data Structures (such as Hashtables) and Data Access Algorithms

— The Core System
The core system manages all the data structures needed for supporting the

OM model. A description of some of these structures is given in Sect. 4.2.
Further, special design patterns have been used to connect the core system
to the other components (Sect. 4.3). Finally, all features of the system are
available through an Application Programming Interface (API).
— The Storage Management Component

The storage management component is responsible for not only the persis-
tence of all data, but also for Transaction Management, Concurrency Con-
trol, Recovery and Security which includes Access Control and Authentica-
tion. Since this component is actually designed in such a way that it can be
connected to other database management systems, most of these tasks are
passed on those systems.

4.2 Basic Concepts

OMS/Java supports the core object model OM (Sect. 3.2) through the notion
of OM Objects, Collections and Constraints.

OM Objects. An object in the OM model does not represent the same entity
as a Java object which is an instance of a Java class. An OM object has a
unique object identity during its whole lifetime. This differs from the way object
references are handled in Java. A reference to an object in Java is only unique as
long as the object is loaded in the Java Virtual Machine. Consider, for example,
that you store a Java object in a file and then read it back again from that file.
Reading from the file means that the Java Virtual Machine creates a new Java
object with a new reference to 1t so it is not possible to decide whether the object
you stored before is the same as the one you retrieved. To solve this problem,
we introduced a special class ObjectID. Every instance of this class represents
an unique persistent object identifier and is related to exactly one OM object.

Further, depending on the context in which an object is accessed (e.g. ac-
cessing an object through a specific collection), the object changes its role. This
implies that more than one type can be associated with an OM object. This is
not supported by the Java environment since it is not possible to change the
type definition of a Java class instance during run-time.

As is shown in Fig. 7, we solved this problem by splitting up an OM object
into the two Java classes OMObject and OMInstance (which is actually a Java
interface class). Additionally, meta information about OM objects needed by the
OMS/Java system are defined in instances of the Java class OMType.

[OMObject] 1:1 11 [ObjectiD]
OM Objects are_related_to Object IDs

0:*

11 [OMType |

OM Types

OMlInstance

OM Instances

are_defined_by

Fig.7. OM Objects

Another approach would have been to implement one’s own dynamic type
system as has been done, for example, in the OMS/Prolog system [NW97]. But,
since we wanted to be able to use standard Java classes in our system, this
approach was not suitable.

Using Java classes involves two steps: first the meta information has to be
defined in the schema (see also Sect. 5.2) such as

type person
(
name: String;

)

Then, for all the types defined in the schema, a corresponding Java class has to
be specified. This can be done in three ways:

— by extending the class OMSimpleInstance which provides all functionality
needed by the system such as meta information.

— by implementing the interface OMInstance, or

— by using the adapter class OMAdapter.
An adapter or wrapper “converts the interface of a class into another inter-
face which clients expect. It lets classes work together that could not other-
wise because of incompatible interfaces.” [GHIJV95]. Hence, the OMAdapter
class makes it possible to use most of the Java classes without modifications.

The following class definition i1s an example for the first approach:

package demo;

import omJava.*;

public class Person extends OMSimpleInstance {
public String name;

}

Collections. An OM object can be classified according to different criteria by
inserting it into collections. Removing an object from a collection and inserting
it into another one simply changes its role. So, if an OM object is stored in
a collection then it gains automatically the member type of that collection.
Further, a collection itself is an OM object and can therefore also be classified by
inserting 1t into other collections. A rich set of algebra operations over collections
(see Sect. 3.2) together with different kinds of collections such as sets, bags and
sequences are also provided by the OMS/Java system.

Constraints. The various structural constraints such as subcollection, cover,
disjoint and intersection between collections (Sect. 3.2), as well as the cardinality
constraints for associations, are specified as Global Constraints in OMS/Java and
will be checked at commit time of a transaction. Local Constraints, on the other
hand, are related to a single OM object. For example, the constraint that all
objects in a collection must be of the same type is defined as a Local Constraint
and will be checked every time the collection is updated. Local Constraints are in
fact specialisations of Triggers. A Trigger 1s related to one or more OM objects
and 1s activated as soon as the trigger condition holds.

Note that Global Constraints, Triggers and Local Constraints are also treated
as OM objects in OMS/Java.

4.3 Design Issues

To take full advantage of object-oriented concepts such as reuse and extensibility,
it 1s important to use the appropriate design patterns.

“Fach pattern describes a problem which occurs over and over again in
our Environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice.” [GHIV95]

Using design patterns not only increases the quality of the software product,
but also makes it possible to build systems that are flexible enough to support re-
quirements not known while implementing it. The following four design patterns
were used to achieve extensibility of our system:

Abstract Factory. The main construct for system parameterisation, respec-
tively, configuration is the Abstract Factory. It defines a set of abstract param-
eters needed at run-time by an application or, in our case, the OMS/Java core
system. Such parameters include among others the algebra used for operations
over collections, the object identifier generator, the query language and data
definition language parsers and the various data structures such as hashtables

(Sect. 4.4).

Abstract Classes. An Abstract Class defines a common interface for its sub-
classes. It defers some or all of the implementation to the subclasses. Hence, an
abstract class cannot be instantiated, but forces the developer of the subclasses
to at least implement important methods needed for the overall system function-
ality. For instance, there is a data structure Container which is used to store
the elements of a collection. Inserting elements into such a container depends
on whether a collection is a set, bag or sequence. For this purpose the abstract
class InsertionStrategy defines a method insert which provides a common
interface for inserting objects into containers and which must be specified by its
subclasses:

abstract public class InsertionStrategy {

abstract public void insert(Container container, Object object);

}

Strategy. The Strategy design pattern defines a family of algorithms. By encap-
sulating all these algorithms into a strategy object, they become interchangeable
and independent from a specific client object. For example, the algorithms to
insert objects into collections are defined as insertion strategies making it possi-
ble to vary the insertion algorithm depending on whether a collection is a set, a
bag or a sequence.

public class SetStrategy extends InsertionStrategy {

public void insert(Container container, Object object) { ... }

1
public class BagStrategy extends InsertionStrategy {

public void insert(Container container, Object object) { ... }

}

Bridge.

“A Bridge design pattern decouples an abstraction from its implemen-
tation so that the two can vary independently.” [GHIJV95]

For example, two bridges have been used to separate the algebra operations and
the underlying data structures from the collection object. Therefore, it is possible
to exchange the data structures and/or the algebra without having to modify
the interface of the collection object. This implies that the collection object must
be initialised by these two bridges. The following example illustrates the use of
these bridge classes. Suppose we want to find all objects of which the attribute
name is equal to the value Smith using the algebra operation select:

OMCollection result = collection.select(''name', "Smith");

This invokes the method select of the OMCollection object which calls the
corresponding method of the Algebra object. This method then performs the
selection and inserts the matching objects into the result collection by invoking
the insert method of this collection. That method again redirects the insertion
by calling the insert method of the InsertionStrategy object which itself
invokes the method insert of the Container object.

public class OMCollection extends OMSimpleInstance {
protected Algebra algebra; // decouples algebra
protected Container container; // decouples data structure
protected OMInsertionStrategy strategy;

public OMCollection select (String selection, Object value) {
return algebra.select(this, selection, value);

}

public OMCollection insert(Object object) {
strategy.insert(container, object);

}
}

public class OMAlgebra implements Algebra {

public OMCollection select (OMCollection collection,
String selection, Object value) {
OMCollection result = ... // perform select operation over
// ’collection’
result.insert (object.key()); // insert matching objects into
//result collection
return result;

}
}

public class Container {

public void insert(Object object) {...}
}

4.4 The Link between the Core System and the Configuration
Component

The Core System is connected to the Configuration Component by an instance of
the Java class Factory as shown in Fig. 8. This Factory class corresponds to the
design pattern Factory and is an important concept for making a system exten-
sible. The Factory class provides various methods such as getNextObjectID(),
getOMLparser(), getCollectionAlgebra() and getCollectionContainer().
The method getNextObjectID(), for instance, returns an instance of class
ObjectID which represents a unique object identifier, whereas getCollection

Algebra() returns an instance of Algebra which can be used for evaluating
algebra operations on collections. All parts of the Configuration Component are
obtained by calling the appropriate method of the Factory instance which, for
its part, 1s given as a parameter while initialising the Core System. By sub-
classing the class Factory and overriding methods such as getNextObjectID(),
it becomes possible to provide to the core system, for instance, different data
structures such as object identifiers.

Configuration Component

Factory

Methods:
- getNextObjectID()
- getCollectionAlgebra()

Core System

Fig. 8. The link between the core system and the configuration component

5 From OMS/Java to TOMS/Java

Extending OMS/Java with new features means in fact to extend, respectively,
to replace parts of the Configuration Component which has been described in
Sect. 4.1. The following list gives a summary of the main tasks that are involved
when implementing extensions to OMS/Java:

— Extending the syntax of the Data Definition Language, the Data Manipula-
tion Language and Query Language, and changing the corresponding parsers,
i.e. implementing the new features in subclasses of the standard parsers.

— Subclassing the standard object identifier class

— Implementing new algebra operations in a subclass of the algebra class

— Extending the various constraint classes

— Defining a subclass of the class Factory which is used as a link between the
Core System and the Configuration Component

The following sections describe in more detail how OMS/Java has been ex-
tended to support the Temporal Object Data Model TOM [SN97c, SN97a].
5.1 The Temporal Object Data Model TOM

TOM is based on the generic object data model OM [Nor93] and exhibits many
of the features found in various temporal object-oriented models, e. g. [RS91,

WD93, KS92, BFG96], but in a more generalized form. For example, we times-
tamp not only data values, but also collections of objects and the associations
containing the temporal relationships between objects. Anything considered to
be an object in our model may be timestamped, even metadata such as con-
straints, types or databases. This allows the specification of a lifespan for each
instance of such a construct. Hence, TOM is based on object-timestamping, i.e.
the object identifiers are extended with a timestamp. A timestamp is a temporal
element [Gad86] — a set of time intervals, closed at the lower bound and open
at the upper bound. Additionally, TOM supports a temporally complete query
lanaguage [BJS95] and temporal constraints. Temporally complete means that
all operations found in the non-temporal data model have to be generalized into
temporal operations, including, for example, the usually neglected set difference
operation. Additionally, temporal comparison predicates have to be supported
allowing expressions such as a before b. Temporal constraints generalise their
non-temporal counterparts with temporal semantics. A constraint no longer has
to hold over a single database state, but rather over the set of those database
states contained in the constraint’s lifespan.

5.2 Language Extensions

This section describes the extensions made to the syntax of the various languages
(DDL, DML and QL) by means of an example:

Suppose we want to build an information system based on the schema given
in Fig. 4. For the sake of simplicity, we model only the collections Persons,
Employees and Students.

Defining the Schema. The following schema has been specified using OML,
the data definition language of OMS/JAVA:

person = demo.Person; // links type ’person’ to the Java class
// ’demo.Person’

employee = demo.Employee;

student = demo.Student;

type person lifespan {[1980/1/1-inf)}
(
name: String;

)

type employee subtype of person lifespan {[1980/1/1-inf)}
(

empID: Integer;

salary: Integer;

)

type student subtype of person lifespan {[1982/1/1-inf)}
(
studID: Integer;

)3

collection Persons : set of person lifespan {[1980/1/1-inf)};
collection Employees : set of employee lifespan {[1980/1/1-inf)};
collection Students : set of student lifespan {[1982/1/1-inf)};

constraint: Employees subcollection of Persons lifespan
{[1980/1/1-inf)};

constraint: Students subcollection of Persons lifespan
{[1982/1/1-inf)};

Three categories of objects are defined in this schema: type, collection and con-
straint objects. Further, the Lifespan of TOM objects, specifying the period of
time in which an object is valid, is set by the corresponding lifespan parame-
ter.

For supporting the notion of Lifespans, we first had to extend the syntax of OML
by the following definitions given in EBNF [Wir96]:

lifespan = "{" interval {"," intervall} "}".
interval = "[" date '"-'" date ")".
date = (year "/'" month "/" day ["™" hour ":" minute ':"

second]) | "inf".

Next, the OML parser had to be adapted to the new syntax. Since all parsers
in our system are part of the Configuartion Component and not of the Core
System, no changes are necessary in the Core System classes for supporting, for
example, a new syntax. Only the corresponding parser has to be changed which
can be achieved by either replacing the existing parser or by extending it. In
most cases, especially if there are only minor changes of the syntax, extending
an existing parser will be possible because we designed the standard parsers
in such a way that they invoke special methods during the syntax analysis.
For example, after the OML parser has parsed a type, collection or constraint
definition such as type person, the method parseRestOfLine(...) is called.
In the case of the standard parser, this method just returns without performing
any action. Hence, for supporting the new Lifespan syntax we just extended the
Java class OMLparser and overrode the parseRestOfLine(...) method.

Creating Objects. One possibility for creating objects and inserting them into
collections 1s to import a file in which the data is described in terms of Data
Manipulation Language statements:

create object paul lifespan {[1969/1/1-inf)}

dress object paul as demo.Person during {[1969/1/1-1975/6/1)}
values (name = "Paul Jones')

dress object paul as demo.Employee during {[1986-1996)}
values (empID = 23; salary = 2000)

dress object paul as demo.Student during {[1993-1995)}
values (studID = 2674)

insert object paul into collection Persons during
{[1985/1/1-1996/1/1)}

The create object statement defines an OM Object the alias of which is paul.
Its lifespan is set to the Lifespan parameter lifespan [1969/1/1-inf). The
dress object statements further specify that instances of the Java classes demo.
Person, demo.Employee and demo.Student are associated to that object and
that this association is valid as given by the During parameters. Remember that
an OM Object can refer to more than one instance of a Java class (as shown in
Fig. 7).

The insert statement states that the object paul is a member of the collec-
tion Persons during the time period specified by the During parameter during
[1985/1/1-1996/1/1). Note that the collection Persons has been already cre-
ated after loading the schema.

To support the Lifespan as well as the During parameters, which are features
of TOM, we had to extend the DML Parser taking the same approach as in the
case of the OML Parser, 1.e. we extended the DML Parser by making a subclass
of the class DMLparser and implemented, respectively, overrode some methods.

Querying the Database. AQL (Algebraic Query Language) is the query lan-
guage of OMS/Java. This language was originally developed for OMS/Prolog
[NW97], and it is both a simple, and yet powerful language with operations over
values, objects, collections and associations. As a simple example, consider that
we want to know which objects are classified as both Employees and Students.
This can be expressed in AQL as:

Employees union Students;

In the case of TOM the corresponding query contains the keyword valid in
addition:

valid Employees union Students;

The valid keyword denotes that the query should be evaluated only on those
objects which are valid now. The result of this query is presented by TOMS/Java
in the form of a scrollable list. By double-clicking on one of the items in the
list, the system dynamically generates a window showing all properties of the
selected object. Figure 9 gives an example of such an object. As in the case of
DDL and DML, we have extended the Java class AQLparser, in this case to
support temporal queries.

briiem Tpmm Fmiwy B @i

Fig. 9. A person object

5.3 Changes Made in the Configuration Component

In this section, we outline the changes made in the Configuration Component
that have been necessary to support TOM. Table 2 gives an overview of the
classes which had to be extended. Instances of these classes can be obtained by
calling the corresponding method of the Factory. Note that the term Factory is
used in the text as a placeholder for an instance of the class ValidTimeFactory.
This class is a subclass of the OMS/Java class Factory and overrides methods
such as getNextObjectID() to support the semantic of TOM (Sect. 4.3).

Table 2. Java classes which had to be extended

Factory Method OMS/Java class TOMS/Java class
getOMLparser () OMLparser TOMLparser
getDMLparser () DMLparser TDMLparser
getAQLparser () AQLparser TAQLparser
getNextObjectID() ObjectID ValidTimeObjectID
getInstanceList () Instancelist ValidTimeInstancelList
getCollectionAlgebra() Algebra ValidTimeAlgebra
getSubcollConstr () SubcollConstr ValidTimeSubcollConstr

Object Identifiers. When a schema definition file is loaded, the core system
first invokes the method getOMLparser() of the Faclory to retrieve an instance
of an OML parser, followed by a call to the parser method generate(schema)
which parses the schema and generates the objects. In the case of TOM, this
parser must be able to manage temporal information such as Lifespans. Hence,
we made a subclass of OMLparser containing new methods for temporal infor-
mation processing as described in Sect. 5.2.

For the schema given in Sect. 5.2, the parser creates the following Java in-
stances: instances of OMType for each type definition, instances of 0MCollection
for each collection and instances of OMSubcollConstr for each subcollection con-
straint. For each of these instances, the parser also gets an ObjectID instance,
respectively in the case of TOM, a ValidTimeObjectID instance by calling the
Factory method getNextObjectID(). The class ValidTimeObjectID is a sub-
class of ObjectID which has been extended for storing Lifespan information.
Finally, the parser sets the lifespans of these object identifiers to the ones given
in the schema.

Object Creation. One way of creating objects is to import a file contain-
ing data defined by Data Manipulation Language statements as has been de-
scribed in Sect. 5.2. For this purpose, the core system calls the Factory method
getDMLparser () which returns an instance of the class DMLparser. Actually for
TOM, the Factory returns a subclass of DMLparser which provides all methods
needed for managing temporal information such as Lifespans (Sect.5.2).

The method generate(inputFile) of the parser is invoked by the core sys-
tem which imports, respectively, creates the objects. For our example, the parser
first creates an OMObject instance, the alias of which is paul, and then as-
sociates it to an instance of ValidTimeObjectID of which the lifespan is set
to [1969/1/1-inf). Further, the parser creates instances of the Java classes
demo .Person, demo.Employee and demo.Student and sets the values of the dif-
ferent instance fields by calling the setAttrib(. . .) method of each instance. Fi-
nally, the parser relates these instances to the object paul by calling the method
dress(instance) which inserts an instance into the Instance List of the object
paul. The data structure Instance List, which is obtained by the Factory method
getInstanceList () while creating an OM Object, 1s used to manage all OM In-
stances related to this object and provides methods such as insert(OMInstance
instance), delete(OMInstance instance), update(OMInstance instance)
and replace(OMInstance instance, int index). For supporting TOM, we
had to extend the StdInstanceList class and to override these methods. In our
example, the Validity of the relationship between the object paul and the associ-
ated instances of demo.Person, demo.Employee and demo.Student is specified
by the During parameters. These parameters are stored by the parser in the
corresponding instance by calling the method setParameter(parameter) of the
OMInstance class. Note that this parameter is of type Object making it possible
to store any kind of information in an OM Instance object.

Collections and Algebra Operations. Collections are represented by in-
stances of the Java class OMCollection and are created, for example, while
loading a schema definition file by the OML parser. Creating such an object
invokes the constructor of the OMCollection class. This constructor itself calls
the Fuactory methods getCollectionContainer() which returns an instance
of the class Container needed for managing the members of a collection, and
getCollectionAlgebra() which returns, in the case of TOM, an instance of
the class ValidTimeAlgebra providing algebra operations such as union(...).
Since the data structure as well as the algebra are returned by the Factory and
are therefore not part of the OMCollection class which belongs to the core sys-
tem, it 1s possible to exchange, for instance, the algebra without having to change
the OMCollection class.

Inserting objects into collections can be done, for example, by importing a
data file using the DML parser. In our example, the object paul is inserted into
the collection Persons. In addition, the during parameter, which is a feature
of TOM, specifies the time period during which paul is a member of Persons.
No changes were necessary to support this feature because an OMCollection

class provides a method setParameter(object, parameter) which can be used
to store additional information for each member object such as the Validity
given by the during parameter. This information is needed by the algebra class
and can be retrieved by calling the collection method getParameter(Object
object). Hence, the OMCollection class does not need to be able to manage
this information and since the parameter is of type Object, the stored infor-
mation is not restricted to specific semantics such as temporal information. So,
for inserting the object paul into Persons the DML parser first invokes the
method insert(object) of the collection to insert the object and then sets
the Validity given by the during parameter by calling the collection method
setParameter(object, parameter).

Evaluating algebra operations simply means calling the appropriate meth-
ods of collection objects. For example, the AQL parser evaluates the temporal
AQL query “valid Employees union Students;” by invoking the union(...)
method of the Employees collection object:

employees.union(students, algebraParameter) ;

The method union takes two input parameters: the second collection object for
the union operation and an algebra parameter which is in our case the keyword
valid. Further, this method calls the method union(employees, students,
algebraParameter) of the algebra instance which has been specified when the
collection object has been created. Hence, only class Algebra, or subclasses of
it such as ValidTimeAlgebra, must know how to handle the algebra parameter.
Note that this parameter can also be of any type.

Constraints. Global Constraints, Triggers and Local Constraints, which have
been defined in Sect. 4.2, are treated as OM Objects and are therefore associ-
ated to an unique object identifier which in the case of TOM is an instance of
ValidTimeObjectID.

Global Constraints such as the subcollection constraint Employees
subcollection of Persons lifespan [1980/1/1-inf) in our example are cre-
ated by the OML parser after loading the schema definition file. The parser in-
vokes for this purpose the Fuctory method getSubcollConstr() which returns,
in the case of TOM, an instance of OMValidTimeSubcollConstr. The Lifes-
pan parameters denote the time periods in which the constraints are valid. The
OMValidTimeSubcollConstr class is a subclass of OMSubcollConstr of which
various methods have been overridden for supporting temporal semantics. Trig-
gers and Local Constraints are created at the same time when the objects to
which they belong are initialised.

6 Conclusions

We presented a general approach for extending database management systems
(DBMS) in terms of model extensibility and described the corresponding general

DBMS architecture. While our approach builds on ideas of architecture exten-
stbility, 1.e. providing architectural support in terms of services such as storage
management, it also differs from it in terms of focussing on the generalisation of
a core data model and system for advanced application domains.

In particular, we described the OMS/Java system which has been developed
to support model extensibilty. As a proof of concept, we have extended OMS/Java
to support the temporal object data model TOM. We are convinced that using
the model extensibility approach leads to database management systems which
are easily adaptable to various application domains. In the future, we want to
investigate extending the system for a spatial data model and also for a version
model. The latter is intended to provide an OMS/Java implementation platform
for a document management system currently under development.

References

[BFG96] E. Bertino, E. Ferrari, and G. Guerrini. A Formal Temporal Object-
Oriented Data Model. In P. Apers, M. Bouzeghoub, and G. Gardarin, edi-
tors, Advances in Database Technology, pages 342-356. Springer, 1996.

[BJS95] M. Bohlen, C. Jensen, and R. Snodgrass. Evaluating the completeness of
TSQL2. In J. Clifford and A. Tuzhilin, editors, Recent Advances in Tempo-
ral Databases, pages 153172, 1995.

[BLWS88] D.S. Batory, T.Y. Leung, and T.E. Wise. Implementation Concepts for
an Extensible Data Model and Data Language. ACM TODS, 13:231-262,
September 1988.

[CDGT89] M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E. Richardson,
D. T. Schuh, E. J. Shekita, and S. Vandenburg. The EXODUS Extensible
DBMS Project: An Overview. In S. Zdonik and D. Maier, editors, Readings
in Object-Oriented Database Systems. Morgan-Kaufmann, 1989.

[CDKKS85] H.-T. Chou, D.J. DeWitt, R.H. Katz, and A.C. Klug. Design and Imple-
mentation of the Wisconsin Storage System. Software Practice and Fzperi-
ence, 1985.

[Cha96] A. Chatterjee. A Framework for Object Matching in Federated Databases
and its Implementation. Journal of Intelligent and Cooperative Information
Systems, 1996.

[EN94] R. Elmasri and S. Navathe. Fundamentals of Database Systems. Ben-
jamin/Cummings Publishing Company, 1994.

[Gad86] S. K. Gadia. Toward a Multihomogeneous Model for a Temporal Database.
In Proceedings of the International Conference on Data Engineering, pages
390-397, 1986.

[GD94] A. Geppert and K. Dittrich. Constructing the Next 100 Database Manage-
ment Systems: Like the Handyman or Like the Engineer. ACM SIGMOD
Record, 1994.

[GHIV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Fle-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[HCLT90] L.M. Haas, W. Chang, G.H. Lohman, J. McPherson, P.F. Wilms, G. Lapis,
B. Lindsay, H. Pirahesh, M.J. Carey, and E. Shekita. Starburst Mid-Flight:
As the Dust Clears. IFEE Trans. on Knowledge and Data FEngineering,
1990.

[[S95]
[KS92]

[MBH*]

[Mes97]

[Nor93]

[Nor95]

[NW97]

[Pro97]

[RS91]

[SC94]

[SN97a]

[SNO7b]

[SN97c]

[WD93]

[Wir96]

A. Heuer and G. Saake. Datenbanken: Konzepte und Sprachen. Interna-
tional Thomson Publishing, 1995.

W. Kéfer and H. Schoning. Realizing a Temporal Complex-Object Data
Model. In SIGMOD Conference 1992, pages 266—-275, 1992.

F. Maryanski, J. Bedell, S. Hoelscher, S. Hong, I.. McDonald, J. Peckham,
and D. Stock. The data model compiler: A tool for generating object-
oirneted database systems. In Proc. of the 1986 Intl. Workshop on Object-
Oriented Database Systems.

S. Messmer. The OM Model as a Framework for the Java Environment.
Master’s thesis, Department of Computer Science, ETH Zurich, 1997.

M. C. Norrie. An Extended Entity-Relationship Approach to Data Manage-
ment in Object-Oriented Systems. In Proceedings of the 12th International
Conference on the ER Approach, 1993.

M. C. Norrie. Distinguishing Typing and Classification in Object Data
Models. In Information Modelling and Knowledge Bases, volume VI, chap-
ter 25. 10S, 1995. (originally appeared in Proc. European-Japanese Seminar
on Information and Knowledge Modelling, Stockholm, Sweden, June 1994).
M. C. Norrie and A. Wirgler. OMS Object-Oriented Data Management
System. Technical report, Institute for Information Systems, ETH Zurich,
CH-8092 Zurich, Switzerland, 1997.

R. Prodan. OMS/Objectivity. Master’s thesis, Department of Computer
Science, ETH Zurich, 1997.

E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model
with Temporal Constraints. In Proceedings of the 10th International Con-
ference on the ER Approach, 1991.

A. Segev and A. Chatterjee. Supporting Statistical Operations in Extensi-
ble Databases: A Case Study. In Proc. IFEFE Seventh International Work-
ing Conference on Scientific and Statistical Database Management, Char-
lottesville, USA, sep 1994.

A. Steiner and M. C. Norrie. A Temporal Extension to a Generic Object
Data Model. Technical Report 265, Institute for Information Systems, ETH
Zarich, May 1997.

A. Steiner and M. C. Norrie. Implementing Temporal Databases in Object-
Oriented Systems. In Database Systems for Advanced Applications (DAS-
FAA), 1997.

A. Steiner and M. C. Norrie. Temporal Object Role Modelling. In Pro-
ceedings of the Conference on Advanced Information Systems Engineering
(CAiSE), 1997.

G.T.J. Wuu and U. Dayal. A Uniform Model for Temporal and Versioned
Object-Oriented Databases. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev, and R. Snodgrass, editors, Temporal Databases: Theory, Design,
and Implementation, chapter 10, pages 230-247. Benjamin/Cummings Pub-
lishing Company, 1993.

N. Wirth. Compiler Construction. Addison-Wesley, 1 edition, 1996.

This article was processed using the ¥TEX macro package with LLNCS style

